

Hunt Evil: Your Practical Guide to Threat Hunting 2

Table of Contents
Foreword by Richard Beijtlich 5

Part I - Hunting: Theory & Practice 8

Chapter 1 Threat Hunting:
People, Process, Technology - Danny Akacki 8

People 9

Process 10

Technology 15

Chapter 2 The Pyramid of Pain:
Threat Hunting Edition - David Bianco 17

Using CTI Effectively 17

The Pyramid of Pain 18

The Pyramid Explained 19

Effective use of CTI for Hunting 22

Chapter 3 Diamond Model
of Intrusion Analysis - Sergio Caltagirone 24

Diamond Model Benefits 25

Understanding the Diamond Model in Threat Hunting/IR 26

Chapter 4 Hunting Through Large Volumes
of Logs - Jack Crook 28

What am I looking for? 28

Why am I looking for it? 28

How do I find it? 28

Chapter 5 Hunting for Malicious DNS
Namespace Collisions - Tyler Hudak 31

The Issue 31

Detection, Prevention, and Response 33

Chapter 6 Hunting Anomalous Behavior
in Proxy/DNS Queries - Samuel Alonso 35

Hunt Evil: Your Practical Guide to Threat Hunting 3

Components of an attack 35

Dynamic DNS 37

DGA 38

Attack Delivery 38

Chapter 7 Waiting vs. Passivity
in DFIR - Scott Roberts 40

PART II - Hunting – Tools of The Trade 42

Chapter 8 Hunting for Uncategorized
Proxy Events Using Sqrrl - Chris Sanders 42

HTTP Proxies 42

Using Risk Triggers with Uncategorized Domains 45

Tips for Investigating Uncategorized Domains 46

Conclusion 47

Chapter 9 Hunting Lateral Movement via PSEXEC
Using Sqrrl and Bro - Ryan Nolette 48

Indicator Searches 48

Virustotal 50

Detecting PsExec Activity with Snort 51

Detecting PsExec Activity Using Bro 51

Stacking 52

Machine Learning 53

Example Hunt 53

Creating Relationships Between Disparate Data Sets 54

Chapter 10 Hunting for Command
and Control - Josh Liburdi 57

Understanding Command and Control 57

High-level TTP overview 57

Example Hypotheses/Sub-hypotheses 60

Datasets to Explore 61

Techniques to Use 61

Stacking 62

Hunt Evil: Your Practical Guide to Threat Hunting 4

Machine Learning 63

Example Hunt – Command and Control 64

Chapter 11 Hunting Critical Process
Impersonation Using Python - David Bianco 65

The Hypothesis 66

The Data 66

The Hunt 67

Conclusions 70

Chapter 12 Hunting for PowerShell
Abuse Using Sqrrl - Matthew Hosburgh 71

Introduction 71

Why PowerShell? 71

Formulating the Hunt: Automated Data Exfiltration

(Windows Environment) 71

Network Data: The Broad Brush 73

Automated Data Exfiltration (Windows Host Environment) 75

Network Findings 76

The Host in Question 76

Process Chaining 78

Conclusion 80

Chapter 13 Leveraging Machine Learning
for Cyber Threat Hunting - Tim Crothers 81

Machine Learning Basics 82

Step One – A Problem to Solve 84

Step Two – Decide on Approach 85

Step Three – Select Appropriate Data 86

Step Four – Determine Proper Features 88

Step Five – Build your Tool 89

Step Six – Test and Tune 92

Conclusion 94

Afterword by Rob Lee 95

Contributors 104

Hunt Evil: Your Practical Guide to Threat Hunting 5

Richard Beijtlich

[1] https://taosecurity.blogspot.com/2011/12/become-hunter.html

[2] Ibid.

Threat hunting: Everyone’s doing it, or at least wants to do it. What is the origin of this
term? In 2011 I wrote an article for Information Security Magazine titled “Become a
Hunter.” I said in part:

“In the mid-2000s, the Air Force popularized the term ‘hunter-killer’ for missions
whereby teams of security experts performed ‘friendly force projection’ on their
networks. They combed through data from systems and in some cases occupied the
systems themselves in order to find advanced threats. The concept of ‘hunting’ (without
the slightly more aggressive term ‘killing’) is now gaining ground in the civilian world.”[1]

At the time I was nearing the end of my four-year term as Director of Incident Response
at General Electric, and I described the threat hunting work done by my team’s incident
handlers:

“Senior analysts [take] junior analysts on ‘hunting trips.’ A senior investigator who has
discovered a novel or clever way to possibly detect intruders guides one or more junior
analysts through data and systems looking for signs of the enemy. Upon validating
the technique (and responding to any enemy actions), the hunting team should work
to incorporate the new detection method into the repeatable processes used by SOC-
type analysts. This idea of developing novel methods, testing them into the wild, and
operationalizing them is the key to fighting modern adversaries."[2]

The Origin of Hunting
and Why It Matters

Foreword

https://taosecurity.blogspot.com/2011/12/become-hunter.html

Hunt Evil: Your Practical Guide to Threat Hunting 6

[3] https://taosecurity.blogspot.com/2007/01/hawke-vs-machine.html

 Why are hunting missions valuable? Why can’t intruders simply be stopped altogether,
or at least have their actions be automatically detected and identified? Consider the
following three factors.

First, high-end intruders have access to most or all of the defensive tools and tactics
used by enterprise defenders. Intruders test their own offensive tools and tactics against
defender infrastructure prior to deployment “in the wild.” Once the attacker knows that
his methods will evade or at least frustrate prevention and/or rapid response, he can
begin to execute his campaign.

Second, most, if not all, defenders lack the platforms, authority, and resources to fully
control, and protect the systems and data for which they are responsible. Defenders
struggle to navigate business challenges in which security is, at best, one of many factors
to balance in a “risk management” framework, or at worst, an afterthought.

Third, nothing changes as quickly as the technology world. While the grand strategic
and operational environments are subject to (relatively) slower disruptive patterns, the
tactical and tool-centric landscape is constantly evolving. Microsoft reveals new flaws
in its offerings on at least a monthly basis. New applications are released on a weekly
basis. New versions of software appear on a daily basis. Developers provision systems in
the cloud or in local virtual settings on an hourly basis. The security team is expected to
identify, manage, and protect all of this surface area, while keeping a smile on their faces.

Despairing yet? Fear not. My 2007 blog post “Hawke vs the Machine” has a clue to the
answer to this problem. In that post I wrote:

“One of the better episodes of an otherwise lackluster third season of Airwolf (one of the
best TV shows of the 1980s) was called ‘Fortune Teller.’ Ace helicopter pilot Hawke finds
himself face-to-face with an aircraft equipped with the Fortune Teller, a machine built to
out-fly the world's best. My favorite line in the episode follows:

Archangel: They haven’t built a machine yet that could replace a good pilot, Hawke.
Hawke: Let’s hope so.”[3]

Therein lies the secret to the effectiveness of threat hunting. The human heart and mind
are the best weapons available to the defender—in any age or environment. Although
attackers can test against defensive tools and tactics, they cannot truly test against
creative threat hunters. In nearly-impossible-to-protect enterprises, creative threat
hunters find ways to unearth treasures using the digital equivalents of toothbrushes and
toothpicks. While sitting in the whirlwind of technological change, threat hunters seek the

https://taosecurity.blogspot.com/2007/01/hawke-vs-machine.html

Hunt Evil: Your Practical Guide to Threat Hunting 7

eye of the storm to be effective and efficient. It is only the dedication and flexibility of the
human analyst that makes digital defense possible.

Despite advances in robotics, machine learning, and artificial intelligence, I remain
confident that no one will build a machine that can replace a good pilot. Thank goodness
for that, and enjoy this book!

Richard Bejtlich
Vienna, VA
November, 2017

Hunt Evil: Your Practical Guide to Threat Hunting 8

Hunting: Theory & Practice
Part I

– Danny Akacki

Threat Hunting: People, Process,
Technology

CHAPTER 1

“This first chapter is designed to provide a high-level overview of
Network Security Monitoring (NSM) and threat hunting. In this
chapter, I will discuss modern security monitoring techniques and
practices including the overall definition and process of hunting,
the people you need to help execute that process, and technology
that will help them achieve their goals.

My target audience is the novice threat hunter. That’s not to
say inexperienced, but those with limited familiarity in matters
of threat hunting. This is a jumping off point and, I hope, a
productive one. This piece is positioned to be the first in a series of
writings that will progressively help lay the foundation, chart the
course, and plan the future of a mature threat hunting initiative."

Simply put, hunting is the act of finding ways for evil to do evil things. Gone are the days
of a prevention-centric security posture. While triage is a critically important aspect, it
can’t be the only goal of a mature SOC. Simply standing up a SIEM and waiting for the
alerts to come to you is, at best, counterproductive. It’s worth noting that organizations
with varied environments and security team goals may define hunting in varied ways such
as hunting for vulnerabilities or threat actor attribution. Let’s begin our planning with
your most valuable assets, your people.

What is “Hunting”?

Hunt Evil: Your Practical Guide to Threat Hunting 9

People

Prior to budgeting for and deployment of the latest and greatest security appliance, your
first consideration should be the hands at the keyboards. Your greatest assets will always
be the people you hire to find evil. Automation is important and necessary, but you still
need a set of eyes on the screens to analyze, reason, and make educated assumptions
about what your data is telling you. An effective mix of skillsets and experience are
required to build a mature Hunt capability.

Individual Style

Each analyst will inevitably develop their own hunt style, processes, tools and tricks.
Traditional wisdom has celebrated this, almost to our detriment. The destination
mattered more than quantifying the journey, as long as the entire team reached the same
conclusion, it was accepted that teaching “style” was a difficult task. The ground truth
is quite the opposite; we need to concentrate more on the “how”. There should be an
utmost importance placed on that journey so we can begin to better identify bias and the
components of how we teach others to hunt.

Skillsets

Analytical Mindset. This is, without question, the most important skill an analyst can
possess. Without the innate curiosity in and pursuit of the “huh … that’s weird,” an analyst
can have all the data in the world but they will inevitably find themselves missing pieces
of the puzzle. The analyst needs to be able to make reasoned assumptions and chart a
new course when the trail runs cold.

Log Analysis. Logs from services and devices are just a couple of the most important
and underutilized sources of intelligence for any security department. The ability to
analyze logs for anomalies and pivot between data sources to see the big picture is a key
competency.

Network Forensics. The ability to read and understand packet capture data and
determine the malicious nature of network traffic. If you’re fortunate enough to extend
your NSM capabilities to the endpoint with an EDR product, a sound foundation in host
based forensics is key to compliment your network knowledge.

Network Architecture. An understanding of different network devices and how they
operate within the environment.

Hunt Evil: Your Practical Guide to Threat Hunting 10

Defining The Analyst: Experience and Qualifications

In a perfect world, the size of your security department should be directly proportional to
the size of your business, however, this is not always the case. As desirable as a multi-
tiered analyst structure might be, sometimes it will work against you. When there are too
many cooks in the kitchen, communication can become an issue. Important details can
either be overlooked or under-analyzed. Separation of duties will also have to be carved
out between different tiers. In order to have a well-rounded team of analysts, several skill
levels should be represented within your ranks.

It’s important to note that Hunting should be taught and practiced at every skill level.
Simply waiting for alerts to pop up on a screen is not an efficient use of your more junior
team members. You may also find your organization can’t support its own internal threat
detection team and you’ll need to augment with a Managed Security Services Provider
(MSSP). However, you won’t know the best course of action until you start doing the
legwork and auditing your company’s preparedness.

Process

Tools mean little if you don’t take the time to build mature processes around them. As a
consultant, I often found that more energy and capital are aimed at external vendors than
investing in, and management of, internal talent. Processes should be designed around
a desire to understand not only what data you have but also the data sources that are
missing or misconfigured. You can’t secure what you don’t know exists.

Attacker Lifecycle. Understanding the different events that happen at any given stage in
an attack lifecycle will better prepare your analysts to compartmentalize and prioritize
their findings and activities.

Tools. This is an incredibly broad area, but at a foundational level, an understanding of
how log aggregators ingest data as well as the function of packet capture analysis tools
are essential for the analyst to understand.

OS Architecture. Different operating systems represent different attack vectors. A strong
grasp of Windows- and Linux-based operating systems is essential.

Attack Methods. Exploit Kits, Malware, Phishing, and software misconfigurations.
Understanding how an attacker attempts to penetrate your network is key to hunting for
indicators of the behavior.

Hunt Evil: Your Practical Guide to Threat Hunting 11

Gathering Data: Collect, Normalize, Analyze.

Determining what should be logged can be a daunting task. There are many logging
standards by which to model your own strategy such as OWASP and NIST. Regulated
businesses also have their own logging strategies to consider including HIPAA, GLBA,
SOX, etc. One of the key steps in any logging strategy should be to determine what
your “crown jewels” are. Data by itself does not equal intelligence, so simply logging
all of the things that make noise on your network would be overkill. What are the
devices, information or intellectual property that, if compromised, would cripple your
organization?
The following are some of the types of logs that may be important to collect in your
environment:

• Configuration Management Database (CMDB)

• Application/service logs

• DHCP

• Proxy

• Web and Application Server

• Active Directory/LDAP

• Domain Name Service (DNS)

• Application Firewall

• Database Application and Transaction

• Host-based logs

• Host/Network IDS/IPS

• Firewall

• Antivirus

• Host-based logs

• Operating System (e.g., Windows Event and UNIX Syslog)

• Endpoint Detection Response (EDR)

• Virtual Machine Hypervisor

• Network infrastructure logs

• VPN

The aim of a mature security process should be to automate large parts of your threat
detection with solid rules and timely altering in order to give your analysts more time to
hunt independently.

Hunt Evil: Your Practical Guide to Threat Hunting 12

From that list, time should be taken to determine how an attacker would go about
acquiring those crown jewels. The graphic in Figure 1 illustrates the Applied Collection
Framework from the book, Applied Network Security Monitoring by Chris Sanders
and Jason Smith. The ACF is designed to help organizations focus on discovering and
quantifying those crown jewels.

Figure 1 – Applied Collection Framework

Data Retention

Another important part of any logging policy is data retention. How much data should you
keep and for how long? A solid retention plan carries many benefits.

Historical: Rarely will you catch an intrusion in real time. The ability to go back through
the data to pick up the how and the when of an incident is extremely important.

Operational: Noticing a sharp, unplanned decrease in log flow can signal a problem with
your overall processes. Such gaps also hinder your analysts from being able to readily
access that data in the event of a security incident.

Strategic: Analytics can be applied to your data in order to find gaps in coverage as well
as gaps in software versions.

Legal: If prosecution is part of an organization’s goal, forensic data can be used in court
to assist in prosecution. In this context, data retention and specifically data integrity

• Router

• Firewall

• Load Balancer

Hunt Evil: Your Practical Guide to Threat Hunting 13

Rules and Alerting

Hunting is as much about automation as it is manual searching. A policy needs to be
in place that governs the broader rules that enable hunting. Rules are important to
automation, but they must be monitored. Five up-to-date and sharply-tuned rules that
give high fidelity alerts are more valuable than 30 broad rules that catch too much and
leave your analysts eyeballs-deep in false positives. The policy should outline how often
rules and alerts are tweaked and who is responsible for the task.

Rules need tuning to help weed out false positives in order to make it bare
actionable fruit. From there, a classification should be made if the rule is worthy of
operationalization or utilized as a “one-off” use-case. A feedback loop between the
Security Operations and Incident Response functional roles is a key component to a good
rules policy. This relationship ensures timely remediation of rules that aren’t tuned tightly
enough or new intelligence is available to create new or strengthen existing rules.

Metrics

Hunting can be an abstract notion. Directly quantifying your achievements to your
management can be a bit of a struggle. “Hunted for this, didn’t find it, we’re good,” is not
a measurable achievement. Some people try to approach metrics by indirect measures. A
natural question to ask is, has the overall rate of security incidents gone down since you
started a hunting program?

The caveat here is that the act of hunting can only increase the number of incidents.
It’s the post-incident, lessons learned phase that decreases future incidents. A more
straightforward question might be: How many incidents did your hunting program
uncover that were not previously known? In order for this metric to be most effective, the
incidents should be categorized by severity.

The greater lesson is even if you aren’t finding evil on the wire, hunting is an opportunity
to discover things heretofore unknown or forgotten about your environment as well as
create a baseline for normal network traffic. Security gaps directly discovered through a
hunting process is an excellent example of a quality metric.

protections are important, otherwise the data will not hold up in court. If you have a
General Council, you can leverage them to assist in crafting a policy on chain of custody.

Hunt Evil: Your Practical Guide to Threat Hunting 14

Intel Sources

• Internal

• Past incidents

• Reconnaissance attempts against your infrastructure

• Threats to your specific line of business and industry verticals

• Threats to you or your customers’ intellectual property

• External

• Paid intelligence feeds

• Open Source Intelligence (OSINT)

• Partnerships with government agencies

Integration

Now that you’ve cultivated a good amount of evidence, what do you do with it? The first
consideration should be the creation of a Knowledgebase or Wiki where you can notate
findings for later review. As much as hunting centers around finding the abnormal,
documenting the normal is equally important. A ticketing system should be the next
consideration for data documentation. This system should be separate from the Help
Desk/IT Ticketing system both for ease of use and internal security purposes. This
system should have the ability to document false positives in order to tune out as much
noise as possible.

Importance of Detection

The truth is dedicated attackers are often times better prepared than the people
defending against them. The only thing we know with one hundred percent certainty
is that there are no magic bullets when it comes to protecting your company’s assets.
Prevention is no longer the master plan and hasn’t been for quite some time. In addition
to robust prevention, defending your organization against current threats requires the
development of detection and response capabilities. It’s not a matter of if you will be
breached, only a question of when. There are various models of attacker methodology

In order for data to be mined for useful intelligence, context must be applied to make
that data actionable. The more context you can apply, the higher the fidelity of your
subsequent findings. Intelligence can come from a variety of sources, both internal and
external to the organization. Whatever the source, your analysts need a thread to pull to
begin their investigations.

Hunt Evil: Your Practical Guide to Threat Hunting 15

Overall Strategy

Whichever philosophy you subscribe to, it’s agreed that an organization can assist the
analysts by at least defining an overall strategy. Like any strategy, it needs to be defined,
evaluated, executed and matured. The following is an important, but by no means
exhaustive, list of weapons to have in your arsenal to help shape that strategy as you
begin to mature your own hunt capability.

Technology

Combing through your immense data horde is impossible without technology that will
not only help you scale but take some of the heavy lifting from your analysts, giving them
more time to focus their hunting endeavors. The sheer volume of data we have presents
the single biggest challenge to a proactive threat detection strategy. We are essentially
trying to find more needles in increasingly larger haystacks. Making things more
complicated, the needles are becoming increasingly adept at masquerading as straw.

That being said, needlessly burning capital to crowbar the next new hotness into an
environment that can’t support or sustain it is counter-productive. Tools need to fit your
workflow not the other way around.

• Threat Intel: Paid/Internal/OSINT

• Friendly Intel: Knowledge of critical assets including network diagrams/IP schema

• Approved Service Interruptions (ASI’s): When should the admins be making
changes?

• Company policy documentation such as an Acceptable Use policy

• Knowledge of data sources

Security Information and Event Management platform (SIEM)

Some organizations think of their SIEM as the wall protecting the castle. In reality, it’s

• The Lockheed Martin Cyber Kill Chain©

• The Mandiant Attack Lifecycle

• The MITRE ATT&CK Framework

from which we can start to build a foundation for a hunting strategy. Some of these
include:

Hunt Evil: Your Practical Guide to Threat Hunting 16

Other Tools

Not all organizations are created equal. While this paper has been written with the larger
enterprise in mind, my hope is to educate and inform organizations of all sizes. If a
commercial product is not feasible for your environment, I suggest doing some research
into open source tools. Tools like Bro, Snort, Moloch, Wireshark, SOF-ELK and Security
Onion can be combined to create a powerful hunting capability.

I would be remiss if I didn’t also mention the importance of rolling your own internal
tools. You’ll be hard pressed to find any security tool, commercial or open source, which
will fit snuggly into your existing environment without some customization. Buying a suit
off the rack will fit well enough, but for a truly custom fit you go to a tailor. Be your own
tailor.

more like a guard dog, just one facet of a defense in depth strategy but is by no means a
silver bullet. Just like any guard dog, if there is no one to train it or take the time to listen
when it barks, it does you no good.

One of the most important questions to ask of your SIEM is, does it enable hunting? If
you’re unable to quickly pivot between data sources and follow the breadcrumbs without
whipping out the manual every 5 seconds, it probably won’t be able to stand up to serious
investigations. Do you have a dedicated security tool content admin to write rules and
tune your SIEM? If not, it will become exponentially harder to get any real value out of
your investment.

Hunt Evil: Your Practical Guide to Threat Hunting 17

The Pyramid of Pain: Threat Hunting
Edition

CHAPTER 2

“As defenders and incident detectors, it’s our job to make the
attackers’ lives as difficult as possible. One way we do this is to
consume Cyber Threat Intelligence (CTI), which for purposes of
this chapter we’ll define as information about an enemy’s tools,
techniques, capabilities and intentions. Most of us are already
familiar with the use of CTI “feeds” in automated detection,
a technique often referred to as indicator matching: If we see
something in our logs that matches a known piece of CTI (the
indicator), issue an alert and have an analyst check it out. But CTI
is good for more than just automated detection. Used correctly, it
can be a critical part of your threat hunting strategy.”

– David Bianco

Using CTI Effectively

On February 18th, 2013, Mandiant (now a division of FireEye) poked a major hole in the
APT intelligence dam when they released their APT1 report profiling a group commonly
referred to as Comment Crew. There followed a small flood of reports from other entities
like Symantec and the FBI and DHS. Most of the furor over the APT1 report regarded its
findings suggesting that APT1 is actually the Chinese PLA’s Unit 61398. This was solid
work, and a real breakthrough in the public policy area, but I was a lot more excited
about the detailed technical information included in the reports’ seven appendices (not
including the video appendix).

After seeing how these indicators were being applied, though, I came to realize
something very interesting: Almost no one was using them effectively.

I put that statement in bold, because it’s a little bit of a challenge, and I’m sure it will
surprise many readers. The entire point of detecting indicators is to respond to them,
and if you can respond to them quickly enough, you deny the adversary the use of those

Hunt Evil: Your Practical Guide to Threat Hunting 18

The Pyramid of Pain

To illustrate the concept of indicator value, I created what I call the Pyramid of Pain. This
simple diagram shows the relationship between the types of indicators you might use to
detect an adversary’s activities and how much pain it will cause them when you are able
to deny those indicators to them. Let’s examine this diagram in more detail.

Types of Indicators

Let’s start by simply defining types of indicators that make up the pyramid:

indicators when they are attacking you. Not all indicators are created equal, though, and
some of them are far more valuable than others. Furthermore, indicators may be more
valuable in some situations than in others.

1. Hash Values: SHA1, MD5 or other similar hashes that correspond to specific
suspicious or malicious files. Often used to provide unique references to specific
samples of malware or to files involved in an intrusion.

2. IP Addresses: An IPv4 or IPv6 address. In most cases netblocks or CIDR ranges
also fit here.

3. Domain Names: This could be either a domain name itself (e.g., “evil.net”) or
maybe even a sub- or sub-sub-domain (e.g., “this.is.sooooo.evil.net”)

4. Network Artifacts: Observables caused by adversary activities on your network.
Technically speaking, every byte that flows over your network as a result of the
adversary’s interaction could be an artifact, but in practice this really means
those pieces of the activity that might tend to distinguish malicious activity from

Hunt Evil: Your Practical Guide to Threat Hunting 19

The Pyramid Explained

Now that we have a better idea what each of the indicator types are, let’s take a look at
the pyramid again. The widest parts of the pyramid are cool colors (blue and green), while
the higher levels are warmer yellows, with the pinnacle being red, the hottest of all. Both
the width and the color are very important in understanding the value of these types of
indicators.

Hash Values

Most hash algorithms compute a message digest of the entire input and output a fixed
length hash that is unique to the given input. In other words, if the contents of two files
varies even by a single bit, the resultant hash values of the two files are entirely different.
SHA1 and MD5 are the two most common examples of this type of hash.

that of legitimate users. Typical examples might be URI patterns, C2 information
embedded in network protocols, distinctive HTTP User-Agent or SMTP Mailer
values, etc.

5. Host Artifacts: Observables caused by adversary activities on one or more of your
hosts. Again, we focus on things that would tend to distinguish malicious activities
from legitimate ones. They could be registry keys or values known to be created by
specific pieces of malware, files, or directories dropped in certain places or using
certain names, or descriptions or malicious services or almost anything else
that’s distinctive.

6. Tools: Software used by the adversary to accomplish their mission. Mostly this
will be things they bring with them, rather than software or commands that may
already be installed on the computer. This would include utilities designed to
create malicious documents for spearphishing, backdoors used to establish C2
or password crackers or other host-based utilities they may want to use post-
compromise.

7. Tactics, Techniques and Procedures (TTPs): How the adversary goes about
accomplishing their mission, from reconnaissance all the way through data
exfiltration and at every step in between. “Spearphishing” is a common TTP for
establishing a presence in the network. “Spearphishing with a trojaned PDF
file” or “... with a link to a malicious .SCR file disguised as a ZIP” would be more
specific versions. “Dumping cached authentication credentials and reusing
them in Pass-the-Hash attacks” would be a TTP. Notice we’re not talking about
specific tools here, as there are any number of ways of weaponizing a PDF or
implementing Pass-the-Hash.

Hunt Evil: Your Practical Guide to Threat Hunting 20

IP Addresses

IP addresses are quite literally the most fundamental network indicator. Short of data
copied from a local hard drive and leaving the front door on a USB key, you pretty much
have to have a network connection of some sort in order to carry out an attack, and
a connection means IP Addresses. It’s near the widest part of the pyramid because
there are just so many of them. Any reasonably advanced adversary can change IP
addresses whenever it suits them, with very little effort. In some cases, if they are
using an anonymous proxy service like Tor or something similar, they may change IPs
quite frequently and never even notice or care. That’s why IP addresses are green in the
pyramid. If you deny the adversary the use of one of their IPs, they can usually recover
without even breaking stride.

Domain Names

One step higher on the pyramid, we have Domain Names (still green, but lighter). These
are slightly more of a pain to change, because in order to work, they must be registered,
paid for (even if with stolen funds) and hosted somewhere. That said, there are a large
number of DNS providers out there with lax registration standards (many of them free),
so in practice it’s not too hard to change domains. New domains may take anywhere up to
a day or two to be visible throughout the Internet, though, so these are slightly harder to
change than just IP addresses.

On the one hand, hash indicators are the most accurate type of indicator you could hope
for. The odds of two different files having the same hash values are so low, you can
almost discount this possibility altogether. On the other hand, any change to a file, even
an inconsequential one like flipping a bit in an unused resource or adding a null to the
end, results in a completely different and unrelated hash value. It is so easy for hash
values to change, and there are so many of them around, that in many cases it may not
even be worth tracking them.

You may also encounter so-called fuzzy hashes, which attempt to solve this problem by
computing hash values that take into account similarities in the input. In other words,
two files with only minor or moderate differences would have fuzzy hash values that are
substantially similar, allowing an investigator to note a possible relationship between
them. Ssdeep is an example of a tool commonly used to compute fuzzy hashes. Even
though these are still hash values, they probably fit better at the “Tools” level of the
Pyramid than here, because they are more resistant to change and manipulation. In fact,
the most common use for them in DFIR is to identify variants of known tools or malware,
in an attempt to try to rectify the shortcomings of more static hashes.

https://github.com/ssdeep-project/ssdeep

Hunt Evil: Your Practical Guide to Threat Hunting 21

Tools

The next level is labelled “Tools” and is definitely yellow. At this level, we are taking away
the adversary’s ability to use one or more specific arrows in their quiver. Most likely this
happens because we just got so good at detecting the artifacts of their tool in so many
different ways they gave up and had to either find or create a new tool for the same
purpose. This is a big win for you, because they have to invest time in research (find an
existing tool that has the same capabilities), development (create a new tool if they are
able) and training (figure out how to use the tool and become proficient with it). You just
cost them some real time, especially if you are able to do this across several of their
tools.

Some examples of tool indicators might include AV or Yara signatures, if they are able to
find variations of the same files even with moderate changes. Network-aware tools with a
distinctive communication protocol may also fit in this level, where changing the protocol
would require substantial rewrites to the original tool. Also, as discussed above, fuzzy
hashes would probably fall into this level.

Tactics, Techniques & Procedures

Finally, at the apex are the TTPs. When you detect and respond at this level, you are
operating directly on adversary behaviors, not against their tools. For example, you are
detecting Pass-the-Hash attacks themselves (perhaps by inspecting Windows logs)
rather than the tools they use to carry out those attacks. From a pure effectiveness
standpoint, this level is your ideal. If you are able to respond to adversary TTPs quickly
enough, you force them to do the most time-consuming thing possible: retrain and learn

Network & Host Artifacts

Smack in the middle of the pyramid and starting to get into the yellow zone, we have the
Network and Host Artifacts. We’re getting into the warm colors, because this is where
we begin to “turn the heat up” on the adversary! This is the level, at last, where you
start to have some negative impact on the adversary. When you can detect and respond
to indicators at this level, you cause the attacker to go back to their lab and reconfigure
and/or recompile their tools. A great example would be when you find that the attacker’s
HTTP recon tool uses a distinctive User-Agent string when searching your web content
(off by one space or semicolon, for example. Or maybe they just put their name. Don’t
laugh. This happens!). If you block any requests which present this User-Agent, you force
them to go back and spend some time a) figuring out how you detected their recon tool,
and b) fixing it. Sure, the fix may be trivial, but at least they had to expend some effort to
identify and overcome the obstacle you threw in front of them.

Hunt Evil: Your Practical Guide to Threat Hunting 22

If I were the adversary, Option #1 would probably look pretty attractive to me in this
situation.

Effective use of CTI for Hunting

Now that we’ve covered all that background, we can finally turn our attention back to the
APT1 indicators. I said that almost no one was making effective use of them. What did I
mean by that, and what constitutes “effective use?”

What I meant was that I see a lot of discussion about the long list of domain names
included in the report. Seth Hall of the Bro NSM project even put out a neat Bro module
you could use to automatically alert when those domains are found in your network
traffic.

This is all good and proper, but almost all the reports and the chatter about it in the
community was oriented towards automated detection of indicators at the lowest levels
of the Pyramid. Of course, this report came out well before most companies were talking
about threat hunting, so this is to be expected. But the Mandiant APT1 report continues
to serve as a model for much of today’s vendor threat reporting, so it’s important to
understand how these CTI reports can be used for both automated detection and for
hunting (which, of course, can often be turned into automated detection).

Whenever you receive new intel on an adversary, review it carefully against the Pyramid
of Pain. For every paragraph, ask yourself “Is there anything here I can use to detect the
adversary’s activity, and where does this fall on the pyramid?” Sure, take all those hashes,
domains and IPs and make use of them if you can. They’re great for automated indicator
matching. Keep in mind, though, that these are often “blown” quickly. Adversaries are
likely to move on from them once they become known, so they have an inherently limited
lifespan. Host and network artifacts are also well-suited for automated detection, and
may be slightly less ephemeral, making them the best choice for signatures and other
automated detection.

new behaviors.

Let’s think about that some more. If you carry this to the logical extreme, what happens
when you are able to do this across a wide variety of the adversary’s different TTPs? You
give them one of two options:

1. Give up, or

2. Reinvent themselves from scratch

https://github.com/sethhall
https://www.bro.org/
https://github.com/sethhall/bro-apt1

Hunt Evil: Your Practical Guide to Threat Hunting 23

If you really want to bring the fight to the enemy, though, you have to focus the majority
of your detection efforts on the Tools and TTPs levels. This is where you’ll probably need
to invest some time in hunting. At the tools level, you might do detailed reversing of
collected samples to fully understand their behavior in your environment, with an eye
towards finding the pieces common in all variants. For the TTPs, you may need to do
some data analysis to detect patterns or trends that correspond with that actor’s known
behavior. Hunting at each level involves a certain amount of time and effort on the part of
your analysts. However, once hunting is complete, you can usually turn your new insights
into automated detections. This is important because swift, decisive reaction is critical to
bringing the pain to your enemies, and nothing is faster than automation!

Hunt Evil: Your Practical Guide to Threat Hunting 24

Diamond Model of Intrusion
Analysis

CHAPTER 3

“This chapter summarizes the Diamond Model Technical
Report which describes a rich and complex model revealing
significant insight into analysis and threat mitigation. Figure 1
is The Diamond Model of Intrusion Analysis. An event is shown
illustrating the core features of every malicious activity: adversary,
victim, capability, and infrastructure. The features are connected
based on their underlying relationship.”

– Sergio Caltagirone

The Diamond Model presents a novel concept of intrusion analysis built by analysts,
derived from years of experience, asking the simple question, “What is the underlying
method to our work?” The model establishes the basic atomic element of any intrusion
activity, the event, composed of four core features: adversary, infrastructure, capability,
and victim.

These features are edge-connected, representing their underlying relationships and

Figure 1 – The Diamond Model

http://www.activeresponse.org/wp-content/uploads/2013/07/diamond.pdf
http://www.activeresponse.org/wp-content/uploads/2013/07/diamond.pdf

Hunt Evil: Your Practical Guide to Threat Hunting 25

Diamond Model Benefits

• Enables contextual and relationship-rich indicators improving cyber threat
intelligence sharing and increasing the range of applicability of indicators

• Integrates information assurance and cyber threat intelligence through activity-
attack graphs

• Improves analytic efficiency and effectiveness through easier identification of pivot
opportunities and a simple conceptual method to generate new analytic questions

• Enhances analytic accuracy by enabling hypothesis generation, documentation,
and testing, thereby applying more rigor to the analytic process

• Supports course of action development, planning/gaming, and mitigation
strategies by integrating easily with almost any planning framework

• Strengthens cyber analysis tradecraft development by formalizing first principles
upon which new concepts can be explored

• Identifies intelligence gap through a phase-based approach and the inclusion of
external resource requirements as a fundamental meta-feature

• Supports real-time event characterization by mapping the analytic process to

arranged in the shape of a diamond, giving the model its name: the Diamond Model.
It further defines additional meta-features to support higher-level constructs such as
linking events together into activity threads and further coalescing events and threads
into activity groups.

These elements, the event, thread, and group all contribute to a foundational and
comprehensive model of intrusion activity built around analytic processes. It captures
the essential concepts of intrusion analysis and adversary operations while allowing the
model flexibility to expand and encompass new ideas and concepts.

The model establishes, for the first time, a formal method for applying scientific
principles to intrusion analysis — particularly those of measurement, testability, and
repeatability — providing a comprehensive method of activity documentation, synthesis,
and correlation.

This scientific approach and simplicity produces improvements in analytic effectiveness,
efficiency, and accuracy. Ultimately, the model provides opportunities to integrate
intelligence in real-time for network defense, automating correlation across events,
classifying events with confidence into adversary campaigns, and forecasting adversary
operations while planning and gaming mitigation strategies.

Hunt Evil: Your Practical Guide to Threat Hunting 26

Understanding the Diamond Model in
Threat Hunting/IR
As a Threat Hunter or incident responder, we try to understand what the threat was in
the networks we are defending. We try and answer questions centered around the core
components of the diamond model: adversary, victim, capability, and infrastructure. This
allows for us to fundamentally detail aspects of malicious activity by using an analytical
concept, and to better understand who, what, why, and how. Let’s break down the core
components into something we can relate to as hunters or defenders.

Adversary

Traditionally this was used to classify certain APT groups (e.g., APT 1) but we can think
of this as who the bad guy is behind the activity. Some examples are email, addresses,
handles, and phone numbers.

Capability

These are methods or capabilities of how the adversary carries out their objective.
Examples would be malware (custom or commodity), exploits, tools used or even
commands used, and command and control infrastructure.

Infrastructure

We aim to answer how the adversary completed the attack or action against our
network. Some of these examples would include IP addresses, domain names, and email
addresses. In most cases of attacks, we want to know how these entities are owned
(compromised third party or actual attacker) but this can prove to be very difficult.

Victim

well-understood classification and intrusion detection research

• Establishes the basis of cyber activity ontologies, taxonomies, cyber threat
intelligence sharing protocols, and knowledge management

These include network assets, email addresses, the person(s) who were attacked, and

Hunt Evil: Your Practical Guide to Threat Hunting 27

Figure 2 – Incident linking through activity threads

the data that was involved in the attack.

As illustrated in Figure 2, ideally, we would want to link specific incidents together (called
activity threads) using the Lockheed Martin Kill Chain to enable grouping of certain
activity. The goal here is link relationships between events in the Kill Chain between
activity threads.

Hunt Evil: Your Practical Guide to Threat Hunting 28

Hunting Through Large Volumes of
Logs

CHAPTER 4

“In this chapter, we’ll discuss how to hunt through large volumes
of logs. We know that companies are consuming huge amounts of
data and the people tasked with hunting through these logs often
struggle with the volume. The question is: How do we, as hunters
and defenders, navigate this sea of data and still be able to find
what our current detection technologies aren’t finding? This is not
an easy task, but I think a lot of it comes down to the questions
that we ask.”

– Jack Crook

What am I looking for?

I think often we may try and generalize the things we are hunting for. This generalization
can lead to broader queries and introduce vast amounts of unneeded logs into your
results. Know exactly what it is that you are looking for and, to the best of your
knowledge, what it would look like in the logs that you have. Keep in mind that the
smaller that “thing” is that you are trying to find, the more focused your query can
become.

Why am I looking for it?

Define what is important to your organization and scope your hunts accordingly. Once you
define what you will be hunting, break that down into smaller pieces and tackle those one
at a time. Prioritize and continue to iterate through your defined process.

How do I find it?

Don’t get tunnel vision. If your queries are producing far too many results, know this will

Hunt Evil: Your Practical Guide to Threat Hunting 29

1. Comprised of multiple actions

2. Actions typically happen over short time spans

3. Will often use legitimate windows utilities

4. Will often use tools brought in with them

5. Will often need to elevate permissions

6. Will need to access multiple machines

7. Will need to access files on a file system

Based on the above hypothesis, we are able to derive attacker needs.

1. Execution

2. Credentials

3. Enumeration

4. Authentication

5. Data Movement

I also know during an active intrusion, attackers are very goal focused. Their actions
typically can be associated with one of the above needs and you may see multiple needs
from a single entity in very short time spans. If you contrast that to how a normal user
looks on a network, the behavior is typically very different. We can use these differences
to our advantage and instead of looking for actions that would likely produce millions of
results, we can look for patterns of behaviors that fall into multiple needs. By looking for
indications of needs and chaining them together by time and an additional common entity,
such as source host, destination host, or user, we can greatly reduce the amount of data

be very difficult to transition to automated alerting. Can you look at the problem you are
trying to solve differently and therefore produce different results? This is, by the way, the
topic for the rest of this post.

If I look at KC7 for example. Often times the actions that attackers take are the
same actions taken legitimately by users millions upon millions of times a day. From
authenticating to a domain controller to mounting a network share, these are legitimate
actions that can be seen every minute of every day on a normal network. These can also
be signs of malicious activity. So how can we tell the difference? This is where looking
at the problem differently comes into play. Before we delve into that, we need to look at
attackers and how they may operate. We can then use what we may think we know about
them to our advantage.

I used the following hypothesis in my slides and I think you would often see some or all of
them in the majority of intrusions.

Hunt Evil: Your Practical Guide to Threat Hunting 30

1. Comprised of multiple actions

b. Actions typically happen over short time spans

c. Will often use legitimate windows utilities

2. Will often use tools brought in with them

3. Will often need to elevate permissions

4. Will need to access multiple machines

5. Will need to access files on a file system

Attackers will continue to operate in our environments, and the amount of data that we
collect will continue to grow. Being able to come up with creative ways to utilize this data
and still find evil is essential. I would love to know your thoughts on this or if you have
other ways of dealing with billions and billions of logs.

we need to hunt through.

So how do we get there?

Hunt Evil: Your Practical Guide to Threat Hunting 31

Hunting for Malicious DNS
Namespace Collisions

CHAPTER 5

“I’ve noticed a problem I first saw many years ago come up again
in multiple places, and apparently it is still very common—DNS
namespace collisions. DNS namespace collisions occur when a
private domain name is able to be resolved on the public Internet,
whether it is intentional or not. ICANN has a lot of information on
this if you are looking for a deep dive on the subject; instead, I will
focus on the potential security issues.”

– Tyler Hudak

The Issue

Let's start with an example. Suppose you own the Internet domain example.org. This is
your Internet presence—all your emails are @example.org, your web servers are in this
domain, even your Active Directory domain is corp.example.org. All is well in the world.

When configuring hosts in your organization, one of the things you will do is set up your
DNS suffix search list. This is the list of domains your systems will add to a host name if
they can't initially resolve it. In our scenario, your DNS suffix search list is example.org
and corp.example.org. So, if a host attempts to resolve mail server, they might also try
mailserver.example.org and mailserver.corp.example.org.

Let's also suppose that you follow good security practices and have split DNS so no one
on the Internet can resolve your internal host names. You also do not allow internal hosts
to directly resolve Internet host names.

Any issues so far? Nope. The computer gods are smiling upon us.

As your organization expands, you find the need to add a new internal domain so you
choose example.com. Uh oh! You don't own that domain on the Internet, but you'll only be
using it on the internal network. Not an issue, right? No, it is a problem.

Hunt Evil: Your Practical Guide to Threat Hunting 32

Figure 1 – Your Happy Domain

Figure 2 – On the Internet, only example.com will resolve.

The issue lies in that you do not own the domain, example.com, but are using it internally;
this is a DNS name collision. The issue comes into play as soon as a host accesses the
Internet directly (from home, a client's network, etc.). When this happens, they won't be
able to resolve hosts with the suffix example.org or corp.example.org—but as soon as
they try to resolve with the suffix example.com (which you don't own) they will succeed.

So how is this an issue? In the best case, it isn't. If your hosts try to resolve something
that example.com can't resolve then aside from some information leakage, things should
be okay. However, what if they try to resolve something that does exist in example.com
and then try to start using it?

For example, our hosts are on the Internet and are trying to reach the internal mail
server host name. The only one that is resolvable is mailserver.example.com, which we

Hunt Evil: Your Practical Guide to Threat Hunting 33

Detection, Prevention, and Response

So how can you detect this? A few ways:

1. Create a list from your DNS for all domains being used by your clients related
to your organization. Make sure you own all those domains. If not, what IPs do
they resolve to? Consider switching from them. This is also a good threat hunting
technique!

2. Windows hosts like to resolve wpad/wpad.dat when browsing. The DNS search
suffix tends to get added to that, so look for any HTTP requests to the Internet for
wpad.dat, then look for what domains the requests are to. Even if they are not your
own hosts (e.g. consultants), you should still be concerned as they could be used
as a pivot point into your network.

By the way, wpad.dat is not something you want your hosts doing this with.

Prevention of this is actually pretty easy—just make sure you own any domain you use,
or use ones that do not have Internet TLDs. (However, from my research there may be
issues with this on some versions of Windows.)

If you do find this happening on your network, I would suggest immediately looking to

don’t own. They then start to send emails—your private, internal-only emails—through a
server you don’t own. See the issue now?

This only happens if that host name already exists in the external domain, right? Wrong.

If DNS wildcards are used, now all of a sudden any host name is being resolved beyond
your control and your hosts are sending data to potentially malicious servers. Think of
how easy it would be to gain information on your organization or compromise your hosts
if I could tell your hosts where their proxy, active directory, or mail servers were when
they were outside your organization. And how would you ever know?

This is not a theoretical attack. In the last few weeks I have found multiple organizations
where this is occurring. Specifically, they are using domains internally that they do
not own, their hosts go outside their organization and are resolving these domains to
malicious IP addresses.

And there are organizations that are squatting on multiple domains (including obviously
internal ones) and setting up wildcard DNS to point them to their own IPs. For what
purpose? I don’t know, but I suspect it can’t be good.

Hunt Evil: Your Practical Guide to Threat Hunting 34

see what your hosts are resolving, what data is going out, and more importantly, what is
coming back in.

I would also recommend blocking the IP addresses and external domains on your
Internet devices to prevent internal hosts from accessing them.

In the end, this is a big problem that I don’t think many realize is going on. Fortunately,
its fairly easy to detect and start investigating. Doing it now will probably save you a lot of
hurt in the long run.

Hunt Evil: Your Practical Guide to Threat Hunting 35

Hunting Anomalous Behavior in
Proxy/DNS Queries

CHAPTER 6

“To start hunting threat infrastructure we are going to look at the
activity generated by your proxies and DNS. The richness of proxy
logs allow you to hunt for different sorts of activities such as drive
by downloads. When hunting for evidence of malware in proxy
logs, fields such as “Referrer”, “URI,” “User Agent” and “Host” to
name a few are easily stackable and useful pivot points for things
like data exfiltration.

I will focus on the URI and Referrer field mainly because these
two fields point the user to a resource on the Internet that may be
suspicious or will compromise your network. URLs are the value of
this field and we will discuss them in this post. These URLs are the
link between your organization and the threat infrastructure of the
attacker, which is leveraged to compromise your network.”

– Samuel Alonso

Components of an attack

There are some interesting components of an attack that I will describe very briefly, such
as: drive by downloads, malware delivery networks, fast flux networks, and dynamic DNS.
All these components are currently the link between you and your attacker. A simple visit
to a URL can redirect you to another URL and serve you an exploit through the landing
page. An image is worth one hundred words.

Landing Page – The first item sent by an EK which consists of code that gathers data
about a victim’s Windows computer and finds a vulnerable application (Flash or Internet
Employer) to order to execute code (.exe or .dll).

Exploit Kit (EK) – A server-based framework that uses exploits that target either
vulnerabilities in a web browser or in third-party applications such as Adobe Flash player,

Hunt Evil: Your Practical Guide to Threat Hunting 36

Figure 1 – Basic concepts of a drive by download

Java Runtime Environment, Microsoft Silverlight, and others.

Malware – This is the payload delivered by the EK if the exploit is successful. An example
of a payload that infected a Windows based computer would be the file types .exe or .dll.

As an example for Exploit Kit detection, a good practice is to search for http code 302
and 200, which could indicate that a URL redirection and a landing page was loaded. Do
not forget this could be normal activity, however, it may not be, depending on the value of
your URL and the analysis results you obtain from it. This URL is primarily the tip of the
iceberg and the first hit against the malware delivery network.

Once the compromise has happened, the malware will phone home to receive commands,
extend the foothold, and perform any sort of activity coded in the malware. This last step
in which malware is served or is calling home through the malware delivery network, is
the most important to understand for a defender. Modern botnets and some malware
use what are called fast-flux techniques such as Dynamic DNS and Domain Generation
Algorithms (DGA) to evade eradication and add confusion to the defender.

The main idea behind a fast-flux network is to map multiple IP addresses to the same
DNS name, so the domain name resolves very quickly, usually in minutes, to different IPs.

These IPs do not host the backend server, they only proxy the query and they send it to a

Hunt Evil: Your Practical Guide to Threat Hunting 37

Figure 2 – Attack resilience

Dynamic DNS

Dynamic DNS is a legitimate technology that allows businesses to host resources
sitting on constantly changing IP addresses. An example would be an individual or
small company which needs to host resources on top of a dynamic IP. When the IP is
constantly changing, Dynamic DNS has the benefit of being able to map that resource to
that constantly changing IP. This particular feature of DNS makes it very attractive for the
criminal who needs to constantly change the IP address of his malware delivery network
to avoid detection.

Dynamics DNS can be perfectly detected in the URL field. Not all dynamic DNS domains
are malicious, however, they are one isolated indicator that, in conjunction with others,
can automatically flag up the malicious nature of the URL. Dynamic DNS is in essence an
effective technology to evade IP blacklisting.

backend server. This provides the attacker a big grade of resilience, cloaking, and savings
since they do not need to duplicate the backend of the malware delivery network.

Hunt Evil: Your Practical Guide to Threat Hunting 38

DGA

Attack Delivery

Let’s now look at some potential options for the attacker to deliver the attack: parked
domains, legitimate compromised domains, and shady domains.

Parked domains

There are legitimate resources on the Internet, and are usually a single page with
ads that provide a very limited value to the user who visits them. These domains are
registered by typo squatters (aka domain squatting) or legitimate domain registrars that
want to monetize the visit of users who might land on the main page. Oftentimes these
domains are used for malicious practices where the page can serve malvertising or
malware.

Legitimate compromised domains

This option is easy to understand: A vulnerable site that is not well maintained can be
compromised and be used for malicious purposes.

DGA is an interesting algorithm. DGA-based malware generates many domain names
and tries to connect to them. Most of these domain names are not registered, they do not
exist, and they will generate a high volume of logs with the NXDOMAIN error. Only a few
of the domains generated by DGA will be up and running, as the attacker has manipulated
the algorithm embedded in the malware to be able to calculate the randomness of the
process to generate domains.

This technology helps to avoid domain blacklisting using randomly generated disposable
subdomains. Similar to fast flux however, the difference is that for dynamic DNS, the IP
falls in the addressing space of one ISP and 1 or 2 ASN´s (autonomous system number).
For fast flux, the IP falls in different ASN´s or different IP´s scattered across multiple
geographic locations.

In the Internet revolution nearly 40 years ago, we started with six Top Level Domains
(TLDs) such as .com, .net, .org, .gov, .mil, and .edu. In later decades, the Internet evolved
quickly, and today we have around 1,000 TLDs. The proliferation of TLDs supports Internet

Otherwise suspect domains

Hunt Evil: Your Practical Guide to Threat Hunting 39

development, however, it also poses a severe risk since it is impossible to monitor them
for malicious activity, and that´s how some of these shady domains support exclusively
malicious content.

The biggest challenge here for the defender is to block or disrupt the communication to
defend against these attacks without causing collateral damage. Things get chaotic when
the defender attempts to block or take down shared domain names, IP addresses hosting
different sites or block name servers used by different domains.

In a future article, I will tackle this issue and I will explain what tools we have available
to detect, block, research, and track this malicious infrastructure. I did not only want to
present what is possible to detect, but also how malware currently behaves since some
of the activity described above will be seen in the analysis of the URL’s you find in your
proxy logs. I have seen analysts go crazy since they were not able to explain why tools and
automation rules were reporting clean sites or different IP’s. Every time the domain is
resolved, this created the mentioned confusing situation, effectively evading detection as
explained before.

I have taken some time hunting in proxies and they will be helpful to understand what
sort of activity is possible to detect in them. As always, it will take time for you to put all
the information together but it is the same process I had to go through that will make
hunting in your proxy logs second nature. Hunting is an endless learning process in which
we need to strive to understand what is possible and also be able to catch up with coming
techniques.

Hunt Evil: Your Practical Guide to Threat Hunting 40

Waiting vs. Passivity in DFIR

CHAPTER 7

“To open up this chapter, let me start by sharing one of my favorite
songs. In the musical Hamilton, Aaron Burr thinks Alexander
Hamilton is a brash, aggressive brute and believes Hamilton thinks
him slow and unwilling to make a decision. Burr then sings this
song to explain his true goals.

Burr ends up having an iconic line about 3/4 of the way through
the song:

BURR: I’m not falling behind or running late
ENSEMBLE: Wait for it, Wait for it, Wait for it, Wait for it
BURR: I’m not standing still, I am lying in wait”

– Scott Roberts

I’d heard this line dozens of times (yeah, I admit, I’m a bit obsessed) but it struck me a bit
differently recently. In this case, I was monitoring a resource being used by an espionage
group in carrying out their attacks. The question came up: Do we notify the owner and
effectively burn the resource, making it unusable by the attacker while losing telemetry?
Or do we continue to monitor it and gain intelligence, but risk it still being used against
victims?

It was a tough choice that ended with us setting a series of conditions for determining
if it was still gaining intelligence. I ended up framing this cost vs. benefit analysis in the
terms Aaron Burr uses in Hamilton: In our investigation, what was happening? Were we
simply standing still (being passive) or lying in wait (actively avoiding action in furtherance
of a more decisive action later)?

Sometimes people claim investigations need to always fix things and move, but
sometimes the best thing for an investigation is to take the time to see what’s happening
and plan the next steps. That shouldn’t be mistaken for passivity. But when do you hold
and when do you move forward?
Unfortunately, I can’t really help you with this one. This takes a combination of experience
and intuition. While I can’t give you a solid answer, here are some key questions to ask

Hunt Evil: Your Practical Guide to Threat Hunting 41

• Are you gaining meaningful intelligence?

• Is gaining more information in the best interest of victims as well as the team
 collecting?

• Are you able to exploit the information you’re gathering in order to act on it in an
 effective and timely manner?

If you answer yes to those questions, then the best course of action is continuing
collection until you’ve gained as much value as possible. The key is to keep revisiting
these questions on a regular basis until there is a change. At that point, you must be
prepared to act, whether that’s remediating your network, notifying a victim, or sharing
the intelligence you’ve gathered with others.

The last thing to consider about balancing the collection vs. action question is the
pressure that can come with it. This can come from many directions—inside your team,
your boss, impacted users, law enforcement, etc. The argument is straightforward and
compelling: Fix the problem and move on to other things.

In the end, you not only have to decide for yourself but make your case to stakeholders,
especially superiors. You have to be prepared to push back against others as long as
you’re getting meaningful collection and developing intelligence. If you can’t get buy in,
then the best choice is to hand off information as soon as possible.
Hamilton himself probably said the best thing about the need to remain strong in
situations like this …

"Those who stand for nothing fall for anything."

– Alexander Hamilton

yourself:

Hunt Evil: Your Practical Guide to Threat Hunting 42

Hunting – Tools of The Trade
PART II

Hunting for Uncategorized Proxy
Events Using Sqrrl

CHAPTER 8

"This chapter will address how to hunt through uncategorized
proxy events. Attackers rely on the abstraction provided between
domains and IP addresses to make their infrastructure more
resilient. A domain name can be registered in a matter of minutes,
and multiple domains can be configured to point to the same
host. This allows attackers to quickly switch between domains and
subdomains to avoid detection. One trick experienced hunters use
is to rely on the immature nature of these domains and hunt for
malicious activity with that in mind. In this post, I’ll discuss HTTP
proxy categorization and demonstrate how you can use Sqrrl to
hunt for malware using previously unseen domains."

– Chris Sanders

HTTP Proxies

Most organizations deploy HTTP proxies as both an efficiency and security mechanism.
A proxy is generally a hardware device that all clients must connect through to access
the Internet. In doing so, commonly visited pages are cached, delivering a performance
boost to the organization’s users and saving bandwidth. For the security practitioner, the
proxy also creates a single point of protection and detection through its ability to log web
browsing and block or alert on entries appearing in blacklists.

These blacklists are a subset of the proxy provider’s URL categorization service. By
crawling and categorizing sites on the internet, proxies can be configured to deny access

Hunt Evil: Your Practical Guide to Threat Hunting 43

to websites meeting certain criteria. For example, many workplaces choose to block sites
classified as pornography, and public schools often block gaming sites. Sites that have
been associated with malware are often categorized accordingly and blocked by default
with most proxies.

Figure 1 – HTTP proxies serve as a choke point for web browsing

Proxy vendors have gotten good at automating their categorization using things like web
crawlers and automated submission analysis from existing customers. That means most
of the URLs you encounter will already be categorized. But, what does it mean when you
encounter a URL that isn’t categorized?

First, the URL could be relatively new. It might also mean that it isn’t being indexed by
search engines, or that it serves a very specific purpose and has gone undiscovered as a
result. Of course, that purpose could be to direct you to a system hosting malware. Many
times, it is likely a combination of these things. The important takeaway is that domains
registered by malicious actors and used for things like phishing attempts and malware C2
often spend a bit more time as an uncategorized site as far as your proxy is concerned.
That means we can hunt for them!

Hunting for Uncategorized Domains

Finding uncategorized domains only requires that you have access to the data feed
generated by your proxy, that you’re logging URL categorization, and that those logs are

Hunt Evil: Your Practical Guide to Threat Hunting 44

Figure 2 – A list of all HTTP proxy records for uncategorized sites

If there are only a small number of results, this might be a fine place to start. In large
networks or where a lot of unknowns exist, you may be better off performing an
aggregation and sorting the visited sites by how many times they were requested, as I’ve
done here:

This query selects the URI stem field (cs_uri_stem) from the HTTP proxy data source
where the category is unknown and groups and counts all unique entries for that field.

The results are sorted by the count with only the top 100 values shown.

SELECT * FROM Sqrrl_ProxySG WHERE sc_filter_category = 'Unknown'
This query returns all HTTP proxy records (Sqrrl_ProxySG) matching a proxy
category (sc_filter_cateogry) of Unknown.

SELECT COUNT(*),cs_uri_stem FROM Sqrrl_ProxySG WHERE sc_filter_category =
‘Unknown’ GROUP BY cs_uri_stem ORDER BY COUNT(*) LIMIT 100

collected somewhere that’s searchable. With that in mind, we ask the question, “Did any
system on my network make an HTTP request to an uncategorized site?”
This question can be answered with a simple aggregation using Sqrrl Query Language as
I’ve done here:

A couple things to keep in mind. First, URL categorization is sometimes an optional

Hunt Evil: Your Practical Guide to Threat Hunting 45

Using Risk Triggers with Uncategorized
Domains
Uncategorized domains aren’t rare enough to be used for alert-based detection, which
is why they are well suited as a hunting input. However, these events are also useful
during the context of other investigations. You can use Sqrrl’s risk trigger functionality to
decorate entities with context indicating they’ve connected to an uncategorized site. The
risk trigger below will accomplish this goal.

Figure 4 – A risk trigger for uncategorized site visits

Risk triggers are run once a day across the previous 24-hours of data. Should this risk
trigger match an entity, it will assign a risk score to it. Those risk scores can be examined
during an investigation with higher risk items bubbling up to the main Sqrrl dashboard.

feature or paid add-on provided by proxy vendors. You’ll need to ensure that service is
enabled. As well, there is no standard naming convention for what proxy vendors call
uncategorized URLs. For example, some vendors will refer to these as “Unknown”
whereas others refer to them as “Uncategorized.” You’ll need to edit the above query to
account for whatever your proxy identifies these sites as.

Hunt Evil: Your Practical Guide to Threat Hunting 46

Tips for Investigating Uncategorized
Domains

The same strategy you use to investigate any communication with a potentially hostile
domain should apply to investigating suspicious uncategorized domains. When you’ve
found one, start by performing a Google search on the domain to see if you can quickly
determine that it is legitimate and rule out the finding. If a determination can’t be made,
you can examine the relationships existing between your internal hosts and the domain.

You should consider examining the following relationships:

• Suspicious files downloaded from the domain. This could indicate the download of

malware.

• Unsolicited outbound communication to the hostile domain with no referrer. This

could indicate malware command and control.

• The reputation of the domain. This would clue you in if someone else discovered

the domain is attacker-controlled.

Figure 5 – An uncategorized site reveals interesting relationships

This type of hunting exercise is most likely to find new malware, newer variants of
existing malware, or phishing-related domains.

Hunt Evil: Your Practical Guide to Threat Hunting 47

Conclusion

HTTP proxy domain categorization has several uses. Hunters can take advantage of rapid
URL classification by searching for communication with yet uncategorized domains to
find evidence of malicious activity based on domains that are new or used for a specific
purpose. This is a simple technique, but one I’ve used countless times to find malware
that other tools haven’t been able to find. By searching for uncategorized domains or
Sqrrl or creating an uncategorized domain risk trigger, you’ll be able to enrich your
investigations similarly.

Hunt Evil: Your Practical Guide to Threat Hunting 48

Hunting Lateral Movement via
PSEXEC Using Sqrrl and Bro

CHAPTER 9

“Lateral Movement is a critical step in the process of carrying out
an attack on a network. It is a category broad enough that it has
its own kill chain step. Although it is a broad tactic, this chapter
will survey a specific method that might be carried out by an
adversary.”

– Ryan Nolette

The type of dataset you use to hunt for lateral movement depends on what you are
hunting for and, by extension, what your hypothesis is. For identifying use of remote
access protocols, you will want to focus primarily on network session metadata,
including:

Image source: Randall Munroe, XKCD, 2017

Indicator Searches

• Netflow (“flow” data in general)

• Firewall logs (should log allowed / accepted packets)

• Bro Conn log

https://xkcd.com/1831/

Hunt Evil: Your Practical Guide to Threat Hunting 49

For identifying User Access Control (UAC) events, you will want to focus on authentication
logs, including:

• Active Directory logs/Windows Security Event logs

• EventID

• 528 or 4624 is indicative of a successful logon

• 529 or 4625 is a failed logon

• 552 and 4648 are indicative of an attacker attempting to use the
runas command or authenticate against a remote host as an
alternative user, #privilegeEscalation.

• 602 and 4698 are indicative of a scheduled task creation

• 601 and 4697 are indicative of a service creation

• Account Features

• Service account

• Interactive login

• Linux Security Event logs

• OSX Security Event logs

• Multi-Factor Authentication (MFA) logs

• Additional UAC applications if exists

Techniques to Use

After having developed the right hypotheses and chosen the necessary datasets, a hunter
must still know what techniques to use to investigate a hypothesis. Here we will survey
three types of techniques that you can use to investigate the above.

As in all cases of using indicators in hunting, the value of this approach will be impacted
by the value of the indicator. Locally sourced indicators will generally provide a high value
because they tend to be timely and relevant to the network or systems you might be
trying to protect. These types of indicators can be gathered from previous incidents or by
internal threat intelligence teams.

It’s also important to remember that it is relatively easy for attackers to change the
remote infrastructure that they use to conduct attacks; if you are using indicators to hunt,
then you should be aware that the indicators may no longer be relevant to a particular
attacker or attack tool.

Hunt Evil: Your Practical Guide to Threat Hunting 50

Figure 1 – Indicator search

Some common network session indicators to search for include:

• IP address

• Port

• Top Level Domain (TLD)

• URI

• Unique strings in the connection

Some common host-based indicators to search for include:

• File hashes

• Filenames

• Registry modification

• Process injection

You can submit a file hash or URL to Virustotal to either have it scanned or return existing
results if the file/URL has been submitted before and comes with the additional high level
information of:

Virustotal

Hunt Evil: Your Practical Guide to Threat Hunting 51

VT also contains a bunch of interesting information about the file, but you can just use the
link above to explore that additional information.

Snort can be used to detect malicious SMB activity. Snort is an open-source intrusion
detection and prevention system, and designed to detect attacks via a pattern-matching
signature. Below is an example of a Snort rule designed to detect the use of PsExec
(Emerging Threats, 2011 http://doc.emergingthreats.net/2010781):

Detecting PsExec Activity with Snort

PsExec is a Windows administration tool used to connect to different systems on a
network via SMB, using administrative credentials. SMB is legitimately used to provide
file sharing functionality, however, misconfigurations can allow malware to propagate
throughout a network. Combine PsExec with the password theft abilities of Mimikatz and
you have an equation for lateral movement.

Detecting PsExec Activity Using Bro

alert tcp any any -> $HOME_NET [139,445] (msg:”ET POLICY PsExec? service
created”; flow:to_server, established; content:”|5c 00 50 00 53 00 45 00
58 00 45 00 53 00 56 00 43 00 2e 00 45 00 58 00 45|”; reference:url,
xinn.org/Snort-psexec.html; reference:url, doc.emergingthreats.
net/2010781; classtype:suspicious-filename-detect;sid:201781; rev:2;)

http://doc.emergingthreats.net/2010781

Hunt Evil: Your Practical Guide to Threat Hunting 52

Figure 2 – Detection of PsExec traffic via a Bro network sensor

In addition to removing control via SMB by PsExec, attackers will upload other binaries
to the victim system or use more meterpreter modules. For example, the tool Mimikatz,
which is used to dump passwords from memory, can be uploaded to a remote system
via the C$, ADMIN$, and IPC$ shares. Bro has the ability to detect Mimikatz getting
transferred over SMB and the ability to check its hash against VirusTotal.

If you don’t dump your Bro logs into a SIEM or other log aggregation platform, I suggest a
simple grep command to search for PsExec usage traffic, “grep -iE “C$|ADMIN$|IPC$””.

Stacking is a technique commonly used in many different kinds of hunts. In the case
of hunting for command and control activity, a hunter will want to stack for anomalous
instances of inbound or outbound traffic. The same metadata types from indicator search
above can be used for stacking, including:

Stacking

• EventID

• UserName

• Account Type

• Hostname

To find lateral movement, you will want to focus on either bidirectional or external to
inbound connection flows. The effectiveness of using stacking is dependent on having a
finely tuned input. Too little won’t reveal enough and too much will flood your ability to
tease out meaningful deviations. If a given result set is too large, then consider further
filtering of the input data set (e.g., isolate your focus to specific internal subnets).
Alternatively, change the metadata that is being stacked (e.g., change from stacking
hostnames to stacking EventID and username).

One technique to detect PsExec activity with Bro is by using custom Bro scripts looking
for PsExec’s use of the C$, ADMIN$, and/or IPC$ shares. These shares added notice
messages of “Potentially Malicious Use of an Administrative Share” in the Bro Notice log.
The use of PsExec creates an executable named PSEXESVC.exe on the target system.
Modified code for my usage. Code is originally from https://www.sans.org/reading-room/
whitepapers/detection/detecting-malicious-smb-activity-bro-37472

https://www.sans.org/reading-room/whitepapers/detection/detecting-malicious-smb-activity-bro-37472
https://www.sans.org/reading-room/whitepapers/detection/detecting-malicious-smb-activity-bro-37472

Hunt Evil: Your Practical Guide to Threat Hunting 53

A more advanced technique involves using machine learning to isolate lateral movement
activity. Supervised machine learning uses labeled training data to make predictions
about unlabeled data. Given a set of known good and known bad examples, you can
create a binary classifier capable of taking in new transactions and deciding if they look
more similar to the good training set or the bad training set. After the classifier is trained,
assuming you have done a good job, you can feed your network and UAC data through it
and get back much smaller set of records that require analyst attention.
For more information on using machine learning for hunting, we highly recommend
watching the presentation ‘Practical Cyborgism: Getting Started with Machine Learning
for Incident Detection’ from David Bianco and Chris McCubbin (presented at BSides DC
2016).

Machine Learning

The example below illustrates how to use the hypotheses laid out above with the data and
techniques enumerated.

Later Movement (Windows Environment)

Example Hunt

Figure 3 – Stacking EventID

https://www.youtube.com/watch?v=2FvP7nwb2UE&feature=youtu.be
https://www.youtube.com/watch?v=2FvP7nwb2UE&feature=youtu.be
https://www.youtube.com/watch?v=2FvP7nwb2UE&feature=youtu.be

Hunt Evil: Your Practical Guide to Threat Hunting 54

Always keep in mind that for each instance of a hunt, there will always be multiple
different paths that a hunter can take to address a given hypothesis. So what does this
activity actually look like in a threat hunting platform like Sqrrl?

First, I need to define relationships between different data sources. For example, my
network data and authentication event data both contain the IP address field. This means
I can create a relationship between disparate data sets as shown below.

Figure 1 displays all of the relationships I have created between different entities within

Creating Relationships Between
Disparate Data Sets

Hunt Evil: Your Practical Guide to Threat Hunting 55

Figure 1 – Relationships

Figure 2 – Low level field mappings

my data. This is a high level visualization of the relationships. The visualization in Figure
2 expands on the high level visualization and illustrates all of the low level field mappings
between each data source being ingested and each entity defined. This is where the
actual mapping of the IP address field between authentication data and network data.

Hunt Evil: Your Practical Guide to Threat Hunting 56

Finally, with all the hard work done, Figure 2 visualizes the event of PSExec being used to
move from 192.168.1.100 to 192.168.1.104 as well as incorporate a Bro alert for PSExec
to add further validation. While this image only shows the exact activity I am describing
for ease of reading, this is what I expect an end result of a hunt to look like. All additional
data and possible connections have been investigated and excluded from the original
large data set until you are only left with the anomalous/suspicious/malicious event.

Figure 3 – PSExec movement

I consider this a successful hunt. I would also have considered it a success if I had found
nothing at all because the point of a hunt isn’t to be a true positive malicious event every
time, but instead it is to validate a hypothesis, to answer a question with a definitive yes
or no. Good luck to all, happy hunting and as always, remember my motto: Flag it, Tag it,
and Bag it.

https://sqrrl.com/the-hunters-den-lateral-movement-part-1/
https://sqrrl.com/threat-hunting-lateral-movement-pt-2-infection/
https://sqrrl.com/finding-evil-when-hunting-for-lateral-movement/

https://sqrrl.com/the-hunters-den-lateral-movement-part-1/
https://sqrrl.com/threat-hunting-lateral-movement-pt-2-infection/
https://sqrrl.com/finding-evil-when-hunting-for-lateral-movement/

Hunt Evil: Your Practical Guide to Threat Hunting 57

Hunting for Command and Control

CHAPTER 10

“In this chapter we will take a look at how to hunt for Command
and Control (C2) activity. Command and control is the process
through which an attacker establishes a connection with a
compromised asset that they have taken control of in a target
network. C2 is a critical step in the process of carrying out an
attack on a network. It is a category broad enough that it has its
own kill chain step (KC6, “Command and Control”). Although it is
a broad tactic, this post will survey the different ways that it might
generally be carried out by an adversary.”

– Josh Liburdi

C2 enables remote access for attackers into target networks. Architecturally, C2 is fairly
predictable. It will generally follow one of two models for implementation: a Client-Server
model or a Peer-to-Peer model. Attackers have multiple options of building their C2
channel, each of which are outlined below.

Command and Control can be identified in either network or endpoint data. Network data,
including network session and application protocol metadata, is likely the most common
source that organizations have access to for identifying C2 activity. Endpoint data, like
process execution and file metadata, can also be used to find C2, but the availability of
this type of data is less common. As such, the focus of this post will be on network data.

Understanding Command and Control

Attackers generally build C2 channels into common protocols (ComPro) or custom
protocols (CusPro). A few examples of common protocols include HTTP/S, SSL/TLS, or
DNS. Custom protocols are harder to predict, but include techniques such as encrypting
packet data with an XOR cipher.

High-level TTP overview

Hunt Evil: Your Practical Guide to Threat Hunting 58

• ComPro + ComPor

• ComPro + UPor

• CusPro + ComPor

• CusPro + UncPor

In practice, these are the 4 methods through which an attacker may configure a
command and control channel. It is instructive to quickly survey each of these methods.

Method 1 – Utilizing a common protocol on a common port

This method of establishing C2 relies very much on the concept of “blending in” with
normal network traffic. Often this includes using HTTPS and utilizing high traffic ports
in the effort of looking like legitimate traffic. The risk of using this method, from the
perspective of an attacker, is that common ports and protocols are often those that are
the most regulated by automated detection systems like a SIEM or IDS. As an example,
the “Cozy attackers” (Cozy Bear / CozyDuke) have used the standard HTTPS protocol in
the past to establish command and control channels. In these cases they were craftily
encrypting data inside the HTTP header.

Method 2 – Utilizing a custom protocol on a standard port

Like in the case with protocols, attackers generally use common network ports (ComPor)
or uncommon network ports (UncPor) for their C2 channels. Examples of standard ports
include 80/TCP (HTTP), 443/TCP (SSL/TLS), 53/UDP (DNS). Uncommon ports are difficult
to predict, but they typically deviate from ports registered with IANA. Attackers can use
any combination of the above protocols and ports:

Some types of malware have been observed to use custom protocols on standard ports.
For example, the FakeM RAT uses a modified implementation of the SSL protocol to
transmit data (and it can also mimic common messaging protocols). This can be useful
for establishing a connection out of a network because one can expect that in most
networks common ports (like 80/TCP, 53/UDP, and 443/TCP) will be open. From the
perspective of an attacker, the risk of using this method is that common ports are usually
closely watched and the use of a custom protocol might make that transmission stand out
from the rest of the traffic. A defender can ask and quickly investigate simple questions
to home in on whether this is happening (e.g., “is there any traffic on port 80 that is not
HTTP?”).

http://researchcenter.paloaltonetworks.com/2015/07/tracking-minidionis-cozycars-new-ride-is-related-to-seaduke/
http://researchcenter.paloaltonetworks.com/2016/01/scarlet-mimic-years-long-espionage-targets-minority-activists/

Hunt Evil: Your Practical Guide to Threat Hunting 59

Method 3 – Utilizing a common protocol on an uncommon port

Various kinds of malware use common protocols to establish communication links, but do
so over uncommon ports that may be open but not as closely monitored as common ones.
This might include sending data from common protocols (for example, HTTPS) to ports
that will usually be reserved for other protocols (such as DNS). Cisco has documented
examples of malware using TLS over uncommon ports.

Method 4 – Utilizing a custom protocol on uncommon port

As a common way to circumnavigate the regular communications channels that might
be monitored on a network, attackers can use a custom protocol and send data through
an uncommon port. In some target networks, this may be the stealthiest C2 method
available to attackers and has been observed as configurations in both commodity

Figure 2 – A packet sample of Kryptik’s custom protocol

Figure 1 – A comparison of normal MSN Messenger
 traffic and FakeM RAT’s mimicked traffic

http://blogs.cisco.com/security/malwares-use-of-tls-and-encryption

Hunt Evil: Your Practical Guide to Threat Hunting 60

ComPro + ComPor

As covered in previous posts, hypotheses should be the foundation and the basis for
whatever hunt you undertake, specifying exactly what it is you’re looking for. There are a
number of common hypotheses that you can develop to hunt for C2 that directly correlate
to the four kinds of TTPs described above. Hypotheses can be derived from working out
details of how an attacker might utilize common protocols or ports. Here are generalized
hypotheses that align with each type of C2 approach:

Example Hypotheses/Sub-hypotheses

Attackers may be operating on a C2 channel that uses a common protocol on a common
network port. Look for unique artifacts pertinent to the protocol you are interested in. For
example, if you are interested in identifying C2 in HTTP traffic, then you might consider
looking for anomalous domains, URLs, or User-Agent strings.

ComPro + UncPor

Attackers may be operating on a C2 channel that uses a common protocol on an
uncommon network port. Look for identifiable artifacts pertinent to the protocol you are
interested in on uncommon ports. For example, look for HTTP artifacts over ports that
are not 80/TCP or 8080/TCP. Uncommon ports can be identified externally (for example,
ports not registered with IANA) or internally (for example, use statistical analysis of
network session metadata to determine which ports are infrequently used).

CusPro + ComPor

Attackers may be operating on a C2 channel that uses custom encryption on a common
network port. Look for anomalies in monitored network port channels. For example, look
for connections that have no identifiable SSL metadata over port 443/TCP.

CusPro + UncPor

Attackers may be operating on a C2 channel that uses custom encryption on an
uncommon network port. Look for anomalous characteristics (e.g., connection duration/

malware and custom attack tools. One example of this method is used by Kryptik
malware, which is described on Malware-Traffic-Analysis.

http://blog.sqrrl.com/the-hunters-den-internal-reconnaissance-part-1
http://www.malware-traffic-analysis.net/2016/11/02/index2.html
http://www.malware-traffic-analysis.net/2016/11/02/index2.html

Hunt Evil: Your Practical Guide to Threat Hunting 61

The type of dataset that you use to hunt for C2 depends on what you are hunting for and,
by extension, what your hypothesis is. For identifying use of custom protocols, you will
want to focus primarily on network session metadata, including:

Datasets to Explore

• Netflow (“flow” data in general)

• Firewall logs (should log allowed / accepted packets)

• Bro Conn log

For identifying use of common protocols, you will want to focus primarily on application
protocol metadata, including:

• Proxy logs, IIS logs

• DNS resolution logs

• Bro HTTP, SSL, DNS, SMTP logs

After having developed the right hypotheses and chosen the necessary datasets, a hunter
must still know what techniques to use to investigate a hypothesis. Here we will survey 3
types of techniques that you can use to investigate the above.

Techniques to Use

Indicator Search

As in all cases of using indicators in hunting, the value of this approach will be impacted
by the value of the indicator. Locally sourced indicators will generally provide a high value
because they tend to be timely and relevant to the network or systems you might be
trying to protect. These types of indicators can be gathered from previous incidents or by
internal threat intelligence teams.

It’s also important to remember that it is relatively easy for attackers to change the
infrastructure that they use to conduct attacks; if you are using indicators to hunt, then
you should be aware that the indicators may no longer be relevant to a particular attacker

length, bytes transferred) in traffic over uncommon ports. Once again, uncommon ports
can be identified externally (for example, ports not registered with IANA) or internally (for
example, use statistical analysis of network session metadata to determine which ports
are infrequently used).

Hunt Evil: Your Practical Guide to Threat Hunting 62

Figure 4 – Searching for indicators

• IP address

• Port

Some common application protocol indicators to search for include:

• Domain (HTTP, DNS, SSL)

• URL (HTTP)

• User-Agent string (HTTP)

• X.509 Certificate Subject (SSL)

• X.509 Certificate Issuer (SSL)

• Email address (SMTP)

Stacking
Stacking is a technique commonly used in many different kinds of hunts. In the case
of hunting for command and control activity, a hunter will want to stack for anomalous
instances of inbound or outbound traffic. The same metadata types from indicator search
above can be used for stacking, including:

• Ports

• URLs

or attack tool.

Some common network session indicators to search for include:

Hunt Evil: Your Practical Guide to Threat Hunting 63

Machine Learning
A more advanced technique involves using machine learning to isolate malicious C2
activity. Supervised machine learning uses labeled training data to make predictions
about unlabeled data. Given a set of known good and known bad examples, you can
create a binary classifier capable of taking in new transactions and deciding if they look
more similar to the good training set or the bad training set. After the classifier is trained,
assuming you have done a good job, you can feed your HTTP (or other network logs)
through it and get back a much smaller set of records that require analyst attention.

Clearcut is a proof-of-concept/demonstration tool created by David Bianco and Chris
McCubbin for using machine learning to find C2-like traffic in Bro HTTP logs. In one
extreme example, it was used to process approximately 180,000 log entries and produced
less than 300 log entries after the machine was trained (a 99.999% reduction). The
resulting entries generated by the machine can be manually reviewed to check for C2

Figure 5 – Stacking for dstport in Sqrrl

To find C2, you will want to focus on either bidirectional or internal to outbound
connection flows. The effectiveness of using stacking is dependent on having a finely
tuned input. Too little won’t reveal enough and too much will flood your ability to tease
out meaningful deviations. If a given result set is too large, then consider further filtering
of the input data set (e.g. isolate your focus to specific internal subnets). Alternatively,
change the metadata that is being stacked (e.g. change from stacking destination IP
addresses to stacking destination ports).

• X.509 Certs

Hunt Evil: Your Practical Guide to Threat Hunting 64

The example below illustrates how to use the hypotheses laid out above with the data and
techniques enumerated.

Example Hunt – Command and Control

activity. You can find Clearcut at https://github.com/DavidJBianco/Clearcut.

For more information on using machine learning for hunting, we highly recommend
watching the presentation “Practical Cyborgism: Getting Started with Machine Learning
for Incident Detection” from David Bianco and Chris McCubbin (presented at BSides DC
2016).

https://github.com/DavidJBianco/Clearcut.

Hunt Evil: Your Practical Guide to Threat Hunting 65

Hunting Critical Process
Impersonation Using Python

CHAPTER 11

“A popular technique for hiding malware running on Windows
systems is to give it a name that’s confusingly similar to a
legitimate Windows process, preferably one that is always present
on all systems. The processes that Windows normally starts
during boot (which I call the critical system processes) make good
targets. Probably the most stereotypical example of this is malware
running as scvhost.exe (a misspelling of the actual svchost.exe
process). As it turns out, though, if you are collecting information
about processes running on your systems, this type of activity is
pretty easy to spot.

– David Bianco

When it comes to comparing strings, most of us are familiar with equality since this is a
basic operation in most languages.

If str1 == str2, then they match! But string matching isn’t always a binary answer. In
this case, we specifically don’t want to find strings that match exactly, nor do we want
to find things that are wildly different. We’re really looking for a narrow window of string
similarity. That is, we’re trying to identify processes that are so similar that they could
easily be confused with the real thing, while not actually being identical to the real thing.

As it turns out, there are a number of ways to compute string similarity. They all work a
bit differently and have particular strengths and weaknesses, but they typically accept
two strings, compare them, and produce some sort of similarity score, like so:

score = compare(str1, str2)

As long as you're using the same algorithm for all the comparisons, you can use the
scores to judge which pairs of strings are more or less similar than the others. Probably

Hunt Evil: Your Practical Guide to Threat Hunting 66

The Hypothesis

Processes whose names are confusingly similar to those of critical system processes are
likely to be malicious.

The Data

In my example, I’m looking at the full path to the binary on disk for any process that
actually ran. Binaries that never ran will not be included in my analysis. It’s important to
note that I’m comparing the path to the binary on disk, not the command line the system
says was run, which is arguably the more inclusive check. In reality, you probably want
to check both, since it’s also quite common for malware to lie about its command line.
However, the command lines in my dataset require a lot of parsing and normalization,
while the binary paths are pre-normalized. Using only the binaries makes a much clearer
demonstration of the technique. Just be aware that for production use, you probably
should spend the effort to normalize your command lines and check them, too.

One final note: on medium to large networks, you’ll find that it won’t be easy to hold all
your process execution data in memory at once. My dataset is rather small, so I don’t
have to worry about it (again, it makes for a cleaner demonstration) but for larger-
scale use, you may need to page your search results, convert the code into Spark, or do

the most well-known algorithm for this is the Levenshtein distance. The resultant score
is simply a count of the minimum number of single character insert, delete, or modify
operations it takes to convert str1 into str2. For example, the Levenshtein distance
between 'svchost.exe' and 'scvhost.exe' (our example above) is 2 (delete the 'v', then add
a new 'v' just after the 'c').

Because the algorithm is so simple, the Levenshtein distance would make a pretty
decent choice for most uses, though in this case we're going to use a variant known
as the Damerau-Levenshtein distance. The only difference here is that the Damerau-
Levenshtein distance adds the transpose (switch adjacent characters) operation. Since
transposition is one of the common techniques for creating confusingly similar filenames,
it makes sense to account for this in our distance algorithm.

With the Damerau-Levenshtein algorithm, the distance between 'svchost.exe' and
'scvhost.exe' is 1 (transpose the 'v' and the 'c'). With that background in mind, let's see
how we can apply it across our network to detect malware masquerading as critical
system processes.

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

Hunt Evil: Your Practical Guide to Threat Hunting 67

The Hunt

First, import some important modules.

If you are a Python programmer, you probably recognize most of these. The jellyfish
module contains a number of routines that compute the “distance” between two strings,
which is what this whole hunt is based on. The following is a nested dictionary that
defines the system processes we consider to be the most likely targets of this type of
process impersonation.

import re
from ntpath import basename
from jellyfish import damerau_levenshtein_distance

CRITICAL_PROCESSES = {'svchost.exe': {"threshold": 2,
 "whitelist":['c:\\windows\\system32\\
sihost.exe',
 'c:\\windows\\microsoft.net\\
framework64\\v4.0.30319\\smsvchost.exe']},
 'smss.exe': {"threshold": 1,
 "whitelist":[]},
 'wininit.exe':{"threshold":2,
 "whitelist":[]},
 'taskhost.exe':{"threshold":2,
 "whitelist":['c:\\windows\\syswow64\\
tasklist.exe',
 'c:\\windows\system32\\
taskhostw.exe',
 'c:\\windows\\system32\\
taskhostex.exe']},
 'csrss.exe':{"threshold":1,
 "whitelist":[]},
 'services.exe':{"threshold":2,
 "whitelist":[]},
 'lsass.exe':{"threshold":1,
 "whitelist":[]},
 'lsm.exe':{"threshold":1,
 "whitelist":[]},
 'winlogon.exe':{"threshold":2,

something else clever to break things up a bit.

Hunt Evil: Your Practical Guide to Threat Hunting 68

Pass similarity() the full path to a binary (e.g., c:\windows\system32\blah.exe) and the
critical processes dictionary above, and it’ll do the checks. If it finds something that’s
confusingly similar to one of the defined critical processes, it’ll return a tuple containing
the critical process to which it is similar and the distance score, like so: (crit_proc,
distance). It’ll stop checking the given process as soon as it finds a close match that’s
not whitelisted, so at most one result will be returned. If it finds no matches, it’ll simply
return None.

It’s probably important to point out here that this function intentionally only compares
the filenames and ignores the path. In other words, it should find c:\windows\system32\
scvhost.exe, but isn’t concerned with things like c:\windows\temp\svchost.exe, where the
filename is correct but the directory path is obviously bogus. We can save this for a future
hunt, though it’s not hard to imagine combining the two!

For each of these processes, we define a distance threshold (distances greater than
zero but less than or equal to this value will be considered suspicious). We also keep
a whitelist of the full path names to various legitimate binaries we found that would
otherwise still register as suspicious. Feel free to tinker with these thresholds and
whitelists, since they are likely to be very system dependent. I had to run through several
iterations with a subset of my data before I got values I was happy with. The workhorse of
this hunt is the similarity() function, which is defined as:

def similarity(proc, critical_procs=CRITICAL_PROCESSES):
 for crit_proc in critical_procs.keys():
 distance = damerau_levenshtein_distance(basename(proc).lower().
decode('utf-8'), crit_proc.decode('utf-8'))
 if (distance > 0 and distance <= critical_procs[crit_proc]
["threshold"]) and not proc in critical_procs[crit_proc]["whitelist"]:
 return (crit_proc, distance)
 return None

 "whitelist":[]},
 'explorer.exe':{"threshold":2,
 "whitelist":['c:\\program files
(x86)\\internet explorer\\iexplore.exe',
 'c:\\program files\\internet
explorer\\iexplore.exe']},
 'iexplore.exe':{"threshold":2,
 "whitelist":['c:\\windows\\explorer.
exe']}}

Hunt Evil: Your Practical Guide to Threat Hunting 69

When it finds suspicious processes, the code will produce output similar to the following:

windows_regex = re.compile("^([a-z]:)|(\\SystemRoot)")

for i in processes_results:
 (guid, path) = i
 if windows_regex.match(path):
 res = similarity(path)
 if res:
 (crit_proc, distance) = res
 print "Process %s is suspiciously similar to %s (distance %d)"
% (path, crit_proc, distance)
 print "\tGUID: %s" % guid

Process c:\windows\system32\csrrs.exe is suspiciously similar to csrss.exe
(distance 1)
 GUID: 00000009-0000-0477-01d1-f282c48bc278
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-0580-01d1-d883914e50c7

For each unique process execution, Carbon Black provides not only the full file path (the
path value), but also a unique ID called the process_guid. If the process turns out to be
suspicious, we'll need that so we can investigate further. The code I used to pull this out
of the database simply returns a list of tuples, like (process_guid, path), which is what
I'll assume yours does, too. If it comes some other way, the following code segment may
need a bit of tweaking.

Finally, we just have to go through the results, weeding out the non-Windows processes (I
have some Linux servers in my dataset) and compute similarity for each. If the similarity()
function returns any results, the code prints them along with the GUID so we can follow
up in our favorite threat hunting platform.

SELECT process_guid, path FROM CarbonBlack WHERE type = 'ingress.event.
procstart'

At this point you need some process execution data! The exact way you get this will vary
from site to site, so I won’t try to provide Python code for this. Suffice it to say that my
dataset is in a database, so I just queried the entire set via a SQL query:

Hunt Evil: Your Practical Guide to Threat Hunting 70

As you can see, we did find a few suspicious processes. One of them, csrrs.exe looks
pretty suspicious! Fortunately, the rest were all the ls.exe binary provided as part of the
OpenSSH package. Since OpenSSH is authorized on our network, this would be a good
candidate to add to the lsm.exe whitelist so it doesn’t keep coming up whenever we run
our hunt.

Conclusions

Even though this hunt is looking at a very specific technique for hiding malware, it can
still be effective. If you have endpoint process execution data, looking for processes
running with confusing names can be pretty helpful and fairly straightforward to
implement.

Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-057c-01d1-d87e79c39834
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-1330-01d1-d87e72d3d61e
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-13d4-01d1-d87d971196b0
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-1268-01d1-d30d8b3d6765
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-0254-01d1-d309333a60d1
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-158c-01d1-d3091a4e674b
Process c:\program files\openssh\bin\ls.exe is suspiciously similar to lsm.
exe (distance 1)
 GUID: 00000009-0000-1300-01d1-d3083db995cc

Hunt Evil: Your Practical Guide to Threat Hunting 71

Hunting for PowerShell Abuse
Using Sqrrl

CHAPTER 12

Matthew Hosburgh

Introduction

Earlier in 2017, the world learned about the massive breach that Equifax reported in
early September. The Cyber Kill Chain would classify the final stages of this attack as the
actions on objective. Unfortunately, Equifax did not detect this activity in time to contain
or prevent the data loss. No organization is above the law, especially in terms of a breach;
however, failing to learn from this example only paves the way for the next catastrophic
breach to occur.

Why PowerShell?

PowerShell is fast becoming the defacto tool for adversaries in nearly every phase of
an attack. With Windows holding nearly 75% of the market share, it’s no wonder why
PowerShell is leveraged so heavily. When time is of the essence, why bring your own
tools to the game when you have ready access to them all? As of version 5, the features
and capabilities are incredible from both an administrator’s and attacker’s perspective.
One Technique leveraged by known adversaries is the automated exfiltration of data. With
PowerShell in play, scripting this type of exfiltration is easy money; however, where is the
starting point to begin hunting for something like this?

Begin by leveraging observed techniques to form your hypothesis. MITRE has an

Formulating the Hunt: Automated Data
Exfiltration (Windows Environment)

Hunt Evil: Your Practical Guide to Threat Hunting 72

Table 1 – Forming the hypothesis

excellent resource, known as the Adversarial Tactics Techniques & Common Knowledge
(ATT&CK for short). Contained in this matrix of tactics is a series of techniques that
attackers leverage to obtain their objectives. Within each category is an explanation,
examples, mitigation, and detection recommendations. Look no further for an
outstanding resource to start formulating hunt hypotheses!

Hunt Evil: Your Practical Guide to Threat Hunting 73

PowerShell User Agent Strings

Certain PowerShell actions should stand out among others. One less-than-normal
behavior is to see PowerShell making web requests, or even worse, uploading data via
HTTP. As an easy starting point, the first technique that can be leveraged is a search for
user-agent (UA) strings that line up to the default PowerShell UA. The default can be
observed in Figure 1. A good start, but not foolproof. Since version 3.0, there is an option
to easily change the default UA to camouflage its identity.

Figure 1 – The default UA string for PowerShell

Frequency Analysis

Since the user-agent is not a reliable indicator alone, Frequency Analysis (FA) can be
used to help visualize automated data leakage. In its simplest form, Frequency Analysis
illustrates how often a particular set of methods show up and if they seem to be
recurring. In this case, the consistent and periodic use of the HTTP PUT method is the
primary indicator that will narrow the focus of the hunt.

POST vs PUT

So why not search for POST data, professor? There lies a distinguishing factor between
the two. According to the RESTFul API, “POST can be used to add a child resource under

Based on one-part hunch, one-part MITRE reference, a viable hypothesis has been
created. Similar to the preparation phase of the six-step incident handling process,
establishing the resources available to the hunter is a time saver. Now it’s time to go
hunting!

Network Data: The Broad Brush

Network data is one of the easiest places to start hunting for oddities within an
environment; however, encryption or lack of visibility can frustrate your network based
hunt. All network traffic has a source. Put another way, there is a process executing on
a host at the other end of the traffic you might be seeing. In most cases, the network is a
great way to get an idea of where to focus more attention, or what hosts might need to be
examined. This is especially true in the case of exfiltration.

Hunt Evil: Your Practical Guide to Threat Hunting 74

Got One!

Figure 2 – The PowerShell UA found in HTTP traffic

Taking this knowledge and applying it to the hunt can reveal some interesting results. In
this case, we can begin our hunt with a suspect PowerShell user-agent, figure 2, at which
point we can pivot into connections and detections as can be seen in figure 3. Leveraging
FA in combination with the beacon and exfiltration alerts narrows down the misbehaving
traffic easily. Figure 2 illustrates the consistent traffic.

Figure 3 – Connections and detections from initial UA discovery

a resources collection.” PUT is used “to modify a singular resource which is already a
part of resources collection.” Confusing, yes, but in my simplistic mind, PUT is more
synonymous with uploading an entire file (think cloud file hosting provider).

Hunt Evil: Your Practical Guide to Threat Hunting 75

Figure 4 – FA Showing a Consistent Beacon Every Two Hours.

An observation based off of the links and alerts: The beacon might also be the same
traffic used to exfiltrate data from the environment. Now it’s time to take a look at the
host!

Automated Data Exfiltration (Windows Host
Environment)

Hunt Evil: Your Practical Guide to Threat Hunting 76

Table 2 – Forming the hypothesis for host hunting

Network Findings

The network indicators pointed to two areas to hone in on: the beacon/exfil IP address. In
this case, the address was the same. Additionally, only one host was observed connecting
to this IP address, which easily points us (the hunters) to the source, or at least, very
close. If you’re still feeling uncertain, here’s what is known so far:

Table 3 – Known indicators

So what is needed to continue our hunt? The hunt matrix is a go-to reference that can
guide you and your team throughout the duration of a hunt. It serves as the map, or goal,
for the duration of the analysis—refer to it often to minimize hunt scope creep (HSC).

The Host in Question

The environment, in this case, was prepared. Every host was setup with Microsoft’s
Sysmon and detailed host logging before this hunt was initiated. Because of this fact,

Hunt Evil: Your Practical Guide to Threat Hunting 77

Figure 5 – General process for examining host data with network indicators

Figure 6 – Searching Sysmon for the exfil IP

Searching for Network Connections within Sysmon logs is a technique to rapidly identify

the ability to hunt on process-based events is available. Without Sysmon, the ability to
hunt on the process would be difficult without an EDR system in place. One other method
for an organization without an EDR system would be to enable PowerShell logging and
specifically, transcript logging for the greatest visibility.

Transcript logging does wonders for the hunter; however, on a system that might
leverage PowerShell frequently, the setting should be tested thoroughly to ensure no
adverse effects. The overall process can be seen below.

Hunt Evil: Your Practical Guide to Threat Hunting 78

Process Chaining

The next step in hunting the source is identifying the process chain. This is accomplished
by one: an EDR system, like Carbon Black Response, which makes easy work of this
technique, or two: manual review. With Sysmon, this is a relatively easy, but tedious
endeavor. What we are trying to accomplish is the identification of the process that was
created to make the network connection. This can be done by first filtering the log on
Event ID 1, which is a process create. Once filtered, searching on the ProcessGUID which
was identified in the original search will help point us closer to the source.

Figure 7 – Filtering Sysmon logs on event ID 1, or process create

With the ProcessGUID, searching for this reference will yield the process that actually
made the network connection.

where the traffic is originating from. Since the exfil/beacon IP is known, taking the host
and searching within Sysmon produces results like what is found in Figure 6.

This search yields a positive finding. Examining the log entry, the image (or process
name) is identified as powershell.exe. This finding further confirms our suspicion of
misbehaving PowerShell.

Hunt Evil: Your Practical Guide to Threat Hunting 79

Figure 8 – Search result for ProcessGUID

Another interesting entry is the CommandLine, which points to a PowerShell script.
Interestingly, the script is called with the execution bypass flag, easily going around
any execution policies set for PowerShell (not to mention the interesting script name).
Additionally, the ParentProcessGUID is there, which is the next level up or next process in
the chain. The great thing about Sysmon is that this info is also included in the log entry.
The ParentCommandLine points to svchost.exe -k netsvcs -s Schedule. This indicates the
script is being called on a schedule. As a hunter, the next area to look would be the Task
Scheduler and the PowerShell transcript logs.

Figure 9 – Task scheduler

Figure 10 – The task scheduler library for the host showing the scheduled exfil script

Hunt Evil: Your Practical Guide to Threat Hunting 80

Figure 11 – PowerShell transcript log showing a failed connection

Two things are now known: The script is set to automatically run on a recurring basis
and the user that set the job is mateo. Possibly the most burning question of “did we lose
data?” can be answered. In this case, the transcript logs show that the web request failed
due to a 501 error on the exfil server.

At this point, the next step would be to look at the user mateo to see if there have been
other lateral movement attempts/successes and to examine the script. In the case that
your organization has the luxury of a SOC or malware analyst team, this could be the
juncture where this information is passed along to assist with that analysis, allowing the
hunter to continue to pursue the adversary. Looking at these further can help to build
additional IOCs or alerts that can be used to build detection capabilities.

Conclusion

In this example, the host was examined for evidence of inappropriate PowerShell usage.
The network indicators learned from the first post were leveraged as the starting point
to track down suspicious hosts. Leveraging resources such as Sysmon and granular
PowerShell logging helped to fully understand what was occurring on the system. The
environment had to be ready ahead of time for this type of data to be available, which
is an important reminder to any security team. Taking what was found and developing
detection capabilities or conducting further analysis can help to increase the odds of the
defenders finding adversaries living off the land.

Hunt Evil: Your Practical Guide to Threat Hunting 81

Leveraging Machine Learning for
Cyber Threat Hunting

CHAPTER 13

“Machine Learning (ML) and Artificial Intelligence (AI) are two of
the hot buzzwords right now. A lot of vendor marketing says they
are using ML and AI to solve all of our security problems. Many of
us that have been in the security industry for years immediately
discount any “easy” solutions offered up by vendors. This is doubly
true with Cyber Hunting. That doesn’t mean that there isn’t a lot
of value to be had from leveraging Machine Learning properly. In
this chapter, we’ll walk through how to achieve some really solid
hunting results with ML and a background in Data Science isn’t
required. We’ll also try to give you a better understanding of what
ML is and how it works in the process.”

– Tim Crothers

One of the reasons to become passionate about leveraging ML for hunting is that it allows
us to be more effective across the board and especially for newer analysts to “punch
above their weight class” as it were. Allow me to explain.

When I’m hunting in a new organization, one of the first places I tend to look is at
HTTP headers flowing out. Why is this? The RFC’s for the HTTP protocol don’t specify
a particular sequence for HTTP headers or whether they should be camel case or
something else. However, most legitimate programs use either the Windows, Mac, or
Linux libraries to create their HTTP communications. And while the RFC’s for HTTP
don’t specify details like case and order the libraries definitely have conventions. A lot
of malicious software creates the HTTP headers internally rather than leveraging the
OS libraries. Because the malware authors are rarely familiar with all of the nuances
of the standard HTTP libraries you end up with subtle differences that can be used to
differentiate manually created HTTP from standard. The downside of this approach is that
it takes a lot of time and effort to become familiar with these nuances. With ML, we can
let the computer figure out the nuances.

Hunt Evil: Your Practical Guide to Threat Hunting 82

Machine Learning Basics

You don’t need to be a data scientist in order to leverage machine learning for some really
excellent results. You will, however, need some basic understanding of ML to be effective
so we’ll start with some fundamentals.

Figure 1 – Statistics image By Heds 1 at English Wikipedia -
 Transferred from en.wikipedia to Commons by Abdull., Public Domain,

https://commons.wikimedia.org/w/index.php?curid=2799839

To be clear, ML is not a silver bullet to solve all your cyber hunting needs. With ML the
biggest amount of work is up front in curating the data and training your model (both
covered in this chapter). But given the need to obtain and curate data to be effective in
cyber hunting anyway, a fair bit of the work is already being done. The benefit of ML is
once you’ve got a model trained for your organization, anyone from the least experienced
to the most experienced on your team can leverage it to find malicious activity. That is
what I mean by “punching above your weight class.” What is exciting about ML applied
to cyber hunting is that you can have novice cyber hunters achieving results on par with
experienced cyber hunters. Given the shortfall of talent in our space, this is very useful.

I want to make sure this piece is not theoretical and allows you, the reader, to work along
with me. To that end I’m going to show sample code and work through a real ML project
focused on hunting in HTTP headers.

https://commons.wikimedia.org/w/index.php?curid=2799839

Hunt Evil: Your Practical Guide to Threat Hunting 83

Machine Learning is a subset of the larger field of Artificial Intelligence. At current levels
of maturity, ML is mostly applied statistics. That statement will doubtless offend a lot of
data scientists but note the “at current levels of maturity” qualifier. Figure 1 shows the
relationship between AI & ML.

Most ML algorithms process a set of data and create a matrix of the characteristics.
That matrix of characteristics is called your “model” and it will be used for evaluating
additional data against. The model is the output of training your ML algorithm with data
and is what is used to evaluate other data to determine what it is. When you use your ML
model in hunting, for instance, you run new data against the model and the results are
things that an analyst should then look at closer.

Doubtless some of you are thinking “I’m already lost,” so let me use an analogy to make
it clearer. Let’s compare different soda cans. How do you recognize the differences?
They are typically the same size and shape. But there are, of course, lots of differences
in color, text, and other details. Essentially this is the heart of ML. The algorithm is
sampling the data points like color and text in our soda can analogy and comparing them.
With a reasonable sample of soda cans, ML can be used to easily determine one from the
other.

Classifying soda cans is a simple use case for ML. Where ML gets interesting is in the
more challenging comparisons like Dog or Cat. At first glance this would seem equally
simple. But if you think about the range of dogs and the range of cats, you can’t just tie
it to ear shape or face shape or colors because of the many, many varieties of dogs and
cats. While in the end the comparison is quite complex, again ML can do a great job here.
The key in dogs vs. cats, and indeed most ML classification problems, is a sufficient data
set to cover the extremes.

ML becomes a boon for threat hunting because once we have trained a model to
differentiate the types of things we are interested in, like malicious HTTP content for
instance, the computer is tireless at being able to look through massive amounts of data
and be constantly looking (i.e. hunting).

ML is NOT something that is like signatures where a match means you’ve definitely found
something. Rather, think of ML as finding things “like” what you are looking for. A good
model will produce accuracy results in the range of 80% to 90%. Anything above 90%
accuracy and you have a really good model. This is why ML is generally better suited for
hunting cases where you want to take a massive amount of data and let the ML algorithm
pare it down to the interesting things a person should look at.

How do you apply ML to a problem like hunting? There are six key steps to leveraging
Machine Learning. They are:

Hunt Evil: Your Practical Guide to Threat Hunting 84

If you complete all six of those steps, you’ll end up with a powerful tool in your arsenal.
We’ll dive into each of the six steps in turn. I am simplifying this, and intend no offense
to data scientists. The nuances of each of these steps (and numerous sub-steps) indeed
warrant an entire field of expertise. The beauty of the current state of ML, however, is
that a lot of people way smarter than I am have taken most of the hard work and boiled it
down so that with a basic understanding of ML, one can achieve powerful results. It’s very
similar to using a car. Someone who knows the details of the mechanics and engineering
of a car can modify it to produce much better results than someone who simply knows
how to drive it. Because so many talented engineers have built the car and do a lot of
complex things under the hood, I can leverage it to accomplish my needs quite effectively.
One of my goals in this article is to convince you that ML has gotten to a similar state
where you can use it effectively without being a data scientist.

1. Choose a problem to solve

2. Decide on approach

3. Have appropriate data

4. Determine appropriate features

5. Build your tool

6. Test & tune

Step One – A Problem to Solve

The first step in leveraging ML is deciding what problem you want to solve. This is an
important first step because while Machine Learning is a powerful tool, it isn’t a panacea
to solve all of your problems. The current state of maturity of ML is that it solves very
specific problems much more effectively than broader problems.

Here are some examples of problems I’ve used ML to help solve:

• Find malicious activity in my DNS logs

• Find malicious PowerShell activity in my Windows logs

• Find malicious traffic that is pretending to be legitimate HTTP/HTTPS

Note that each of those are very specific problems. Examples of the broad types of
problems ML is not well suited to are to find all malicious protocols on the wire or
expecting a single model to find all types of malicious files. This is not to say that ML
cannot be leveraged for broader use cases, but as the breadth of the use cases increases,
the complexity and difficulty increases as well. Essentially the tighter you can scope
your problem, the more likely you will be able to successfully create a model with a high
degree of accuracy.

Hunt Evil: Your Practical Guide to Threat Hunting 85

Step Two – Decide on Approach

The second step is to decide on whether you are going to use supervised or unsupervised
ML. This step tends to be a pretty easy and quick decision but requires a bit of explanation
as to how each works and the related pros and cons.

Supervised Machine Learning

Supervised ML is so called because you need to direct (i.e. supervise) it’s training. This
means you’ll need a set of data separated between the types you are trying to build
your model to recognize. For instance, if you’re trying to find malicious PowerShell in
Windows logs you will need logs with both malicious and non-malicious separated. When
you train your model, you’ll tell the program which is which and let it build the model to
differentiate in the future.

For the sake of not getting too deep into the science, supervised learning is generally the
best choice for use with specific problems like I advocated in the previous section.

Unsupervised Machine Learning

It is probably not a shock that the other alternative to Supervised ML is Unsupervised
ML. Unsupervised ML is essentially anomaly detection. Unsupervised ML is extremely
powerful but usually better suited to broader use cases.

No doubt some experienced security practitioners perked up at the mention of “anomaly
detection,” and indeed it can be very useful. The reason I lean away from it though is
that I find the majority of anomalies in the real world are not security issues, but things
like misconfigured servers or odd (but not malicious) user or application activity. With
anomaly detection you end up with, effectively, another data pile you need to hunt.
Certainly, this has value, but I find that by training a model for precisely the types of
things I want to hunt, I get things of much more interest to look at. To be clear though,
both have value and their place.

Another way to characterize the supervised vs. unsupervised approach is that supervised
requires a lot more work up front to curate (i.e. label and clean) your data whereas

Another key aspect of selecting your problem is you will need appropriate data. We’ll
unpack this a bit more in step three, but it’s worth noting as a prerequisite for choosing
your problem.

Hunt Evil: Your Practical Guide to Threat Hunting 86

Step Three – Select Appropriate Data

Machine Learning’s dirty little secret is that this step is where you’ll spend most of your
time. The actual ML work is quite simple as you’ll see shortly. The hard work is curating
your data. On a typical ML project, I spend about 90% to 95% of the overall time curating
the data. The age-old analogy of “garbage in, garbage out” certainly applies in spades
with ML. The better curated your data, the better your results will be.

For my example code and application for this piece I’m using Supervised Learning. The
problem I selected to use for this example is to find Malicious activity in HTTP headers.
With my example, the first step was to collect a lot of HTTP headers. I’m a huge fan of
Bro and so invariably anything involving network traffic I use Bro.

For a use case like mine to find malicious traffic a great place to start is http://malware-
traffic-analysis.net. It’s a fantastic treasure trove of malware samples including packet
captures. So start with a bunch of malicious traffic pcaps. Then if you’re using Bro, the
next step is to run bro –r against the pcap files. Bro will process each of them as if it’s
live traffic and produce the standard mix of .log files based on your Bro configuration and
modules you have enabled. You can see this in Figure 2.

Figure 2 – Tagged Log Files

The httpheader.log is what we’re looking for in this case. This is not a standard Bro
module. Instead of breaking each HTTP component out into a separate column/field
like http.log does it creates a single serial concatenation of the entire HTTP header. The
reason I chose this over HTTP is mostly due to experimentation and testing for different
ways to analyze the HTTP headers using ML. Figure 3 shows part of the contents of the
above example.

unsupervised allows you to get running quicker, but will require a lot more analysis on
the back side to evaluate what is found. Outside of the scope of this piece but certainly
relevant for those wanting to continue going deeper with ML is a hybrid approach where
you leverage unsupervised ML to help you find things of interest and then switch to
supervised ML to build a model to find those interesting things long term.

http://malware-traffic-analysis.net/
http://malware-traffic-analysis.net/

Hunt Evil: Your Practical Guide to Threat Hunting 87

Figure 3 - httpheader.log

Label and Partition your Data

Once you’ve collected your malicious and non-malicious data (or whatever classification

The next step is to analyze the sample for anything that isn’t part of the malicious activity
from the sample. This particular sample is quite clean and just contains the malware
activity, so it’s suitable for use in training our model. You’ll want to get in the habit of
checking because a lot of times malware will do things like check for connectivity by
hitting things like Google DNS or Microsoft NTP. Those same checks are done by lots of
legitimate software as well so you don’t want to train your model that those particular
activities are malicious.

Getting non-malicious traffic is actually the harder challenge. Ideally you want to pull
typical traffic from the environment you want to use the model in. But you’re going to
need to spend some time pulling out any malicious activity so you don’t build a model that
thinks malicious traffic is okay. Inevitably, this is where I spend the majority of my time.
I find it’s easier to edit out the malicious activity in the httpheaders.log files than it is to
try to eliminate it up front. To accomplish this, I took an entire day’s worth of traffic from
my enterprise and ran it through Bro. Then I cross-referenced all of the malicious activity
that the team had found for that day and cut those entries out of the httpheaders.log file
and pasted them into another httpheaders.log file which I labeled mal_httpheaders.log.

You’re going to want a LOT of non-malicious traffic. The wider the variety of traffic you
have the better your models will be. Obviously, a LOT is not very specific. There isn’t a one
right answer for precisely how much a LOT is. I typically try to gather at least a terabyte
of non-malicious traffic. That isn’t in any way a requirement but I’ve found in my own
experimenting that this is a good threshold that gives good results in my models.

Hunt Evil: Your Practical Guide to Threat Hunting 88

Step Four – Determine Proper Features

Features are the data points that your ML model will be using to calculate statistical
variance from. Getting the right features is definitely critical to the accuracy of your
model. This is the step that requires the most data science and statistics understanding
to build the best possible models. That said, you can still build very effective models
without understanding feature selection inside out and backwards.

Some examples of features for different types of traffic are:

• URL in HTTP headers

• User Agent in HTTP headers

• Event ID in Windows event logs

• DNS Query and Response from DNS logs

You can see from these examples that some features are generally obvious based on
subject matter expertise. Sometimes the best features are not obvious, and a proper data
scientist will typically not assume any features and build a model using all of the possible
data points as a feature and then use a variety of tests like computing the variance
between individual features to guide which features should be selected. In the end
though, good old experimentation is a large part of it, even for data scientists. I’ve found
experientially that starting with features based on understanding of the protocols or data
yields very effective models the majority of the time.

It was experimentation for good features that led me to using the httpheaders module
over individual HTTP header values. Remember that unlike building a static IDS
signature, we’re looking to build a fuzzier result. Our model will never produce 100%
accuracy but it will also find things that a static signature won’t for those same reasons.
This is exactly why I feel that ML is a great hunting tool rather than a standard detection

you are going for) you need to make sure you’ve got it separated for easy labeling of
which data is which type. I do this as I collect the data by simply creating ‘malicious’ and
‘non-malicious’ folders under my project folder and drop the log files in the appropriate
directories as I clean them.

The other thing you need to do is partition off about 20% of each type for later testing.
After I have my training data gathered, I create ‘malicious-test’ and ‘non-malicious-
test’ folders and simply move 20% of the data to each. We’ll use those sets of data to
determine how effective our models are after we build them. The 80% will be used to
create the models.

Hunt Evil: Your Practical Guide to Threat Hunting 89

Step Five – Build your Tool

Data science libraries exist for virtually every language. My language of choice for this
work is Python. There are three modules, Pandas, Sci-Kit Learn, and NumPy that do all
of the heavy lifting for us. Pandas takes care of the large data sets. Pandas uses what it
calls dataframes to hold large data sets. Sci-Kit Learn and NumPy provide all the data
science and mathematical support. All three modules are very actively supported and
maintained.

tool.

The final consideration with feature selection is that more features aren’t necessarily
better than less. The more features you add the more complex (and thus slower) the
computations are. There is a sweet spot where you have sufficient features to be highly
accurate but not so many that it takes the model forever to process your data.

Our tool is going to need to do a few things. We’re going to need to be able to parse our
data files into a form that the ML models can process. One key caveat to be aware of is
that the calculations can only be done against numerical values. If your data contains
text or some other sort of non-numeric data, then it has to be converted into numerical
data before the actual processing takes place. This isn’t as significant of a problem as
it first appears as many of the algorithms actually do the work for you of converting the

Figure 4 – Modules and Parameters

Hunt Evil: Your Practical Guide to Threat Hunting 90

data into a numerical form. Speaking of algorithms, you will need to choose which one to
use in your tool. Algorithm choice is a topic that could easily be a book itself, so for this
discussion, the standard recommendation is to use “Random Forest” if you don’t have a
specific algorithm you should use. Random Forest is unusual in that it actually uses many
algorithms under the hood and calculates which is the most effective internally. Lastly,
we’ll need two modes for our tool, a training mode and an analysis mode. I usually choose
to write two separate pieces of code, but many use a single tool that just has different
command line parameters for each mode.

If you want to follow along with the code, you can find it available at https://github.com/
Soinull/assimilate. We’ll start with assimilate-train.py. That is the code to build our ML
model.

The first section loads our modules and sets up the command line parameters.

Figure 5 - Pandas

There are a few lines of code to make sure we have the right command line parameters,
and then the data is parsed and loaded into a pandas dataframe.

Figure 6 – Data Science code

Line 38 initializes the dataframe. In this case we’re using a single feature: the

https://github.com/Soinull/assimilate
https://github.com/Soinull/assimilate

Hunt Evil: Your Practical Guide to Threat Hunting 91

Lines 48-53 are where all the data science happens. In Assimilate, I chose to use the
Naïve Bayes algorithm. This is the algorithm used to determine whether incoming
e-mail is spam or not. We didn’t have to convert the textual headers to numerical values
because Naïve Bayes already handles that for us.

Figure 7 – Writing out modules

The final thing we need to do is store our model files. Our entire training code is just 59
lines of Python, although to be fair, there is also a utility module which does all of the Bro
parsing work. That file is only 120 lines of code itself.

Next let’s look at the analyzer functionality. This script is called assimilate-assess.py and
the first lines of code look very much like the trainer code in that it imports the modules
we need and then sets up the command line parsing.

Lines 39-45 initialize our various dataframes and model files then lines 48 and 49 load
the models created by our trainer code.

Figure 8 – Trainer code modules

serialization of the entire HTTP header. We also need a field to label whether the
particular row is good or bad (malicious or non-malicious).

Line 42 loads all of the non-malicious data into our dataframe and line 45 loads our
malicious Bro http headers.

Hunt Evil: Your Practical Guide to Threat Hunting 92

Figure 9 - Writing to a log file

The tool has a fair bit of code for formatting output, but the real work is done in just
four lines of code. Line 53 parses and loads the log file to be assessed into a dataframe.
Line 61-63 examine a particular header, calculate the vectors on that header, and then
compare it to the model to make a prediction if it’s malicious (bad) or not. Then the code
displays the prediction if it thinks it is malicious and writes it to a log file if the command
line option to log to a file was specified.

Lines 77 to 104 do the exact same thing, but with a directory full of log files rather than
on a single log file like in Figure 9. And that is all there is too it. Because a lot of really
smart people work hard to maintain Pandas, Sci-Kit Learn and NumPy we can create ML
models to help us hunt. We do have one more step to do after creating our tools though.

Step Six – Test and Tune

At this point we’re ready to create our model and then determine its accuracy.

Assimilate is written to take two directories containing Bro httpheader log files. The “-n”
parameter specifies the directory containing the normal files and the “-m” points to the
directory containing malicious files. You can see by the output in figure 10 that each folder
is read in and parsed and then the model files created and written out.

Hunt Evil: Your Practical Guide to Threat Hunting 93

Figure 10 – Creating our model

Once you’ve built your model files you want to run them against the 20% good and bad
you set aside earlier. If your model is 100% accurate then all of your good samples will
be classified good and all of your malicious headers will be flagged as malicious. It is
common to have just 50-60% accuracy on the first run. If your accuracy is less than
50% then you likely have a problem with your data cleanliness or, less often, with your
feature selection. The two key things to keep tweaking are your data set and your feature
selection. Good accuracy should get you in the 85-90% range. Anything north of 95%
accuracy is considered excellent.

You can see a screen capture of the tool running against one of my test logs. Currently my
real models in production are running just over 94% accuracy.

Figure 11

Hunt Evil: Your Practical Guide to Threat Hunting 94

Conclusion
Of course, everything looks easier than it is in real life. Personally, I’ve been investing 10-
20 hours a week for almost three years to get to my current level of proficiency. You don’t
need to invest that much effort to become proficient in leveraging ML for cyber hunting,
however. Scores of books, video training, and classes are now readily available to shorten
the learning cycle. And the result is definitely worth the effort. Assimilate, the example
I’ve used here, totals less than 300 lines of code and can be used by novice hunters to
accomplish things that previously were only possible with experienced cyber hunters.
And just as importantly, Assimilate can be built to run continuously and provide constant
hunting, as compared to cyclical hunting as done by people.

Finally, there are a couple other great tools released by others which I strongly
recommend checking out. Clearcut, available at https://github.com/DavidJBianco/
Clearcut, demonstrates both supervised and unsupervised ML. Clearcut is also designed
to find malicious activity in HTTP headers, but uses the standard Bro http.log instead of
the httpheaders like Assimilate. Clearcut also supports unsupervised ML, so it will give
you some good perspective on how unsupervised ML can be used for hunting.

Malicious Macro Bot, available at https://github.com/egaus/MaliciousMacroBot,
showcases an example of how just good ML can be. Malicious Macro Bot includes
models and a Docker implementation so you can have it running in minutes. Even
more impressively, Malicious Macro Bot is currently running at over 98% accuracy for
determining if a macro is malicious or not. Spending a little time studying both of those
will give you a lot of sample code you can use to jump start your own ML hunting efforts.

https://github.com/DavidJBianco/Clearcut
https://github.com/DavidJBianco/Clearcut
https://github.com/egaus/MaliciousMacroBot

Hunt Evil: Your Practical Guide to Threat Hunting 95

Rob Lee

As discussed across this book, threat hunting is a focused and iterative approach
to searching out, identifying, and understanding adversaries that have entered the
defender’s networks. Unfortunately, most organizations are still reacting to alerts and
incidents instead of proactively seeking out the threats. Threat hunting itself cannot be
fully automated. The act of threat hunting begins where automation ends, although it
heavily leverages automation. With that said, many organizations are finding success
with a focus on core continuous monitoring technologies and relying on more security
automation in their environments to make hunting more effective.

Over the past few years, organizations that are adopting threat hunting tactics and
strategies are increasing. But most of the growth is limited to the financial, high tech,
military/government, and telecommunications sectors. These are the sectors directly
afflicted with targeted attacks by numerous threat groups supported by organized crime
and nation-states. Healthcare is inching higher in representation, as this sector has been
plagued by ongoing ransomware attacks over the past few years.
Threat hunting is new for most security teams, and it is primarily accomplished through
unstructured and untested “hunting” capabilities.

Part of the reason so few teams use externally provided methodologies is that there are
not a lot of public reference resources for teams seeking to adopt hunting practices.
There are very few published guidelines for proper threat hunting tactics and strategies
across the security industry. This book goes a long way to closing the gap on setting some
guidelines on effective hunting in most organizations.

Moreover, many organizations are not matured enough to fully adopt threat hunting
capabilities. The survey demonstrates that most organizations are still struggling to

Threat Hunting: The Newborn
Child in IT Security

Afterword

Hunt Evil: Your Practical Guide to Threat Hunting 96

adopt more formal threat intelligence capabilities into their security operations centers
(SOCs), which is a requirement for proper threat hunting to occur. A significant number
of groups, outside the largest of enterprises and governments, are still struggling with
putting together security operations and mature incident response capabilities, which are
prerequisites for dedicated hunting capabilities.

Threat hunting is new, and its emergence is reminiscent of the initial information security
operations of the late 1990s and early 2000s. Most of it is internally learned and not
well documented. Helping to correct the lack of overall threat hunting experience, an
increasing number of larger organizations have dedicated their teams to threat hunting
in their daily security operations. These hunting teams are slowly sharing their results,
techniques, and findings with the community through conferences, whitepapers, blogs,
and small online collaborative groups.

Given the lack of framework, selecting from the many new products or services
specializing in threat hunting is a “buyer beware” environment. Some service and product
companies have simply relabeled their products as “threat hunting,” because they help
“detect threats.” Although threat hunting is used to detect threats, it is much more than
that.

Hunting is about taking a proactive—as opposed to a reactive—approach to identifying
incidents. A reactive organization begins incident response (IR) when an alert or
notification comes in. The alert could come from a third party, such as the FBI, or it
could come from the organization’s own security sensors. The best analogy to a reactive
approach is that the IR team is largely waiting to be called into action and relies on the
accuracy of the notifications it receives. Most organizations start building their IR teams
as a reactive organization, and there is nothing wrong with that. In many cases, the IR
team is largely composed of augmentation staff that normally fulfill other duties during
their regular jobs. As the organization grows larger, or if it has an increasing number of
incidents, the team is likely to become permanent. Even larger organizations likely still
augment their IR teams with additional internal personnel or might contract to third-
party contractors that provide such services.

Organizations move from being reactive organizations to becoming hunting organizations
when they realize they are not detecting their incidents early enough. The idea of a
hunting-based response doesn’t mean it is an either/or approach. A key element of
becoming a hunting organization is adopting a mindset that assumes an adversary is
already present. That opens the organization’s eyes to detect key indicators of an attack.

Most hunting organizations are also reactive. The distinction is that they begin to task
their IR teams to engage actively and hunt for adversaries inside their environment. To
accomplish this task, the team will typically be armed with known malware, patterns of

Hunt Evil: Your Practical Guide to Threat Hunting 97

activity or accurate threat group intelligence to aid them in their search.

Organizations that decide to create a hunting organization sometimes fail to see the
importance of proper threat intelligence for driving the search in the right areas. Simply
tasking a team to “find evil” isn’t enough. The team needs to know the difference
between normal and abnormal as a prerequisite. They need to know typical hacker tools
and techniques, and they need to be skilled in both network- and host-based forensics
and response to look for the footprints of these adversaries. Finally, it helps if the
organization has invested heavily in a cyber threat intelligence capability that will help
guide the team to the right locations on the network to look for specific indicators and
techniques associated with threat groups interested in the specific data or capability that
the organization owns. Having such capabilities is an achievable goal. But be prepared.
Hunting involves both a manual and a semi-automated scanning of systems looking for
evil.

Continuous Hunting: Not There Yet
Asking organizations whether they accomplish threat hunting is a hard question to assess
correctly. For example, if you present this scenario to an individual: “You are downtown
in a large city walking alone to your car. Do you look for potential threats?” He or she is
likely to answer “Yes.” Threat hunting in an organization is very similar.

In the SANS 2017 Threat Hunting survey, most organizations feel they conduct threat
hunting regularly. Because threat hunting is new, respondents could also categorize
activities related to antivirus, IDS or security information, and event management (SIEM)
alerts as “threat hunting” activities. These data sources are likely used in hunting, but all
three are reactive, and response technologies, whereas hunting, is more proactive than
reactive.

The “reactive trend” is a very important takeaway because it shows that most
organizations are not accomplishing hunting before detecting the event. They are simply
responding to alerts provided by intrusion detection systems. This is “business as usual”
in the information security industry. Hunting still plays a large role in the “incident
scoping” phase of the incident response, given that the incident intelligence is now
guiding the hunters on where to find additional compromised hosts. This phase helps
determine the total number of compromised systems and measures the level of severity
of the breach.

From our perspective, this is very positive and likely indicates that the organization is
approaching formal proactive threat hunting operations and is developing skills along the
way. If you ask senior or expert threat hunters where they learned to “hunt,” most will say

Hunt Evil: Your Practical Guide to Threat Hunting 98

it was through their involvement in IR and scoping the extent of the breach.

The IR team is transitioning from reacting to incidents to hunting for threats themselves
is a great sign that many organizations are likely on the cusp of formalizing their threat
hunting capabilities over the next few years. The only challenge, which we will discuss
later, is retaining the staff that is learning these newfound threat hunting skills.

From my perspective, to accomplish continuous hunting, you must have a set
methodology. Without a set methodology, organizations are simply guessing where to
look, using random techniques that may or may not work.

Mainly SOC-Based Hunting
One of the key questions of the survey asks: “What activities would initiate an active
threat hunt in your environment?” Examining the results, it seems that hunting appears
to be more centered on “reactive” indicators instead of proactive intelligence.

This means that more organizations are following a traditional SOC “security monitoring”
approach as opposed to utilizing predictive cyber threat intelligence (CTI) to do targeted
inspections of likely locations of adversarial activity. Most security teams use alerts/
alarms from other tools, which indicates the use of more traditional detection approaches
that are not as scalable or accurate. Such approaches can increase false positives. The
reactive capabilities being used in “hunting” are not customized to the specific threats
facing an organization.

Another contributor to the false positives problem is that according to the SANS Threat
Hunting Survey 2017 79% use anomalies in their environments to guide their hunting.
Many anomalies are false positives, and differentiating false positives from anomalies
is increasingly difficult. Although anomaly detection can provide some success,
organizations can leverage more effective hunting capabilities to reduce the time
and effort that cyber security teams might encounter while chasing the source of the
anomalistic blip on the radar.

What is encouraging is that 49% use open source third-party intelligence in their threat
hunting operations, while 57% also use custom intelligence from intelligence providers.
Without CTI, organizations attempting proactive hunting are shooting in the dark, as they
will have limited knowledge on where to find and uncover likely adversaries targeting
their organization. According to the SANS 2017 Cyber Threat Intelligence Survey, many
organizations do not yet have a formal internal team working on threat intelligence. To
begin this process, we recommend that teams that are just starting out seek companies
providing threat intelligence feeds and look to industry resources, if available.

Hunt Evil: Your Practical Guide to Threat Hunting 99

Bottom line: Organizations that create or ingest modern threat intelligence feeds for
tuning sensors to initiate hunting operations are more successful at threat hunting.
Organizations need to consider that hunting is more than advanced security monitoring
and move their hunting mindset strategically through targeted approaches using threat
intelligence to provide hunting accuracy.

In the 2017 SANS Threat Hunting Survey, it is also apparent that many threat hunting
organizations are prioritizing “technology” over personnel. Intrusion detection
capabilities and proper logging are essential to proper data collection, and hunting
requires more than just technology to succeed. Threat intelligence, scalability, and
analysts are needed to drive those capabilities to succeed. Threat hunting automation is
similar to spell-check in a word processor. While it can help to identify mistakes, it is, by
its nature, largely human driven and is more of a tool, rather than true automation.

Threat Hunting Skills and Tools
Threat hunting tools driven by trained analysts can help increase the scalability and
accuracy of threat hunting operations. Core technical skill sets and knowledge areas

Hunt Evil: Your Practical Guide to Threat Hunting 100

are also key to a successful threat hunting team. The two key areas defined by the
participants include core security operations capabilities and digital forensics and
incident response (DFIR) skills. Baseline knowledge of networks and endpoints make up
the first tier of knowledge. These knowledge areas are essentially understanding typical
network traffic and endpoint services across multiple locations inside an enterprise
network. These skills are rated appropriately, as they are core capabilities and are,
therefore, mandatory for threat hunting to be effective.

In the same grouping, we also observe both threat intelligence and analytics. Security
analytics provide short- and long-term historical views of data in motion and at rest
across the network and hosts, enabling threat hunting teams to begin to spot anomalies.
Moreover, threat intelligence provides the key difference for hunt teams to focus on
areas targeted by adversaries, in addition to being on the lookout for key adversary
tactics, techniques, and procedures (TTPs) in use across the enterprise. Without
threat intelligence fine-tuning a team’s area of focus, most teams find themselves
overwhelmed by the massive amount of data they must analyze. DFIR skills make up
the second tier of required skills, given that incident response and forensic skills are
the baseline capabilities needed to perform hunting on single hosts and at scale across
an organization’s enterprise network. DFIR skills are usually ranked to follow core
capabilities because trained analysts use them to help recognize and extract new threat
intelligence used to identify compromised hosts using Tier 1 skills.

The two tiers are grouped perfectly. It is recommended that organizations initially focus
on building out the core capabilities when trying to build a threat hunting team. Arm your
team with the ability to examine baseline network and endpoints. Then, be able to use
security analytics and threat intelligence to identify compromised hosts more efficiently
and at a scale that pairs up with the size of your network.

Hunting Automation: Fully Automated
or Semi-Automated?

Automation is such a misunderstood word, especially in the context of threat hunting.
Hunting needs capabilities to help enhance speed, accuracy, and effectiveness. The best
hunting teams heavily leverage automation to aid in increasing the scale and efficiency of
hunts across the enterprise. However, by its definition, hunting is best suited for finding
the threats that surpass what automation alone can uncover. Threats are, after all,
moving targets. Still, it is important to recognize the intertwined nature of automation
and the human process of threat hunting.

Tools and capabilities that aid threat hunting is SOC driven. Traditional information

Hunt Evil: Your Practical Guide to Threat Hunting 101

security architecture such as SIEM analytics, log file analysis, intrusion detection and
antivirus are largely automated capabilities based on signature-based rules fed and
maintained by analysts. When you begin to introduce hunting concepts using these
capabilities, they often record, identify, and possibly ignore small anomalies that often are
the barely visible tracks of advanced adversaries. Ignoring these trivial anomalies is easy
because there are too many to properly vet in even a modest-sized network.
After discovery, most security teams realize that their sensors did, in fact, record the
adversaries’ activities at the time those alerts occurred. However, the teams were too
overwhelmed to pay any attention to them.

These capabilities can be enhanced greatly by utilizing threat intelligence effectively. With
proper intelligence, additional threat indicators of compromise and the right analysts
using properly tuned tools, some seemingly benign alerts would be identified as major
events. Threat hunting, threat intelligence, and security operations can move together in
harmony.

Of the 2017 SANS Threat Hunting survey respondents, 16% say they are using threat
hunting via fully automated alerts. The number of fully automated hunting capabilities
actually in use is a small percentage and is likely tied directly to the fact that hunting is
difficult to automate across the many processes and human functions still involved. The
majority of respondents stated that their threat hunting capabilities are semi-automated
or not automated at all.

The lack of true automation highlights the idea that it is a challenge to fully automate
threat hunting. Such a realization brings to the forefront that over-reliance on standard
SOC reporting tools such as SIEM/IDS tends to skew reports of hunting effectiveness
because they aren’t hunting—they are performing intrusion detection. Having said that,
SIEM/IDS data can be used to help identify anomalies in hunts.

While I applaud automation in increasing the speed, scalability, and accuracy of threat
hunters, understand how much you should automate. Consider seeking tools to enhance
and scale hunting activities, but not drive them. It is more appropriate to invest heavily
in threat intelligence feeds and training and hiring skilled personnel than it would be to
seek capabilities that claim they can fully automate hunting activities.

A Choke Point?
In the SANS 2017 Threat Hunting survey, 77% of respondents said endpoint data was
critical for conducting hunts, and 73% selected access and authentication logs. Threat
intelligence feeds, including vendor and information sharing and analysis center (ISAC)
feeds, are rated in the middle of the types of data feeds needed for hunting, being

Hunt Evil: Your Practical Guide to Threat Hunting 102

selected by only 64% of respondents, which also shows that targeted and specific hunts
are not being done by respondents because targeted hunts cannot be accomplished
without threat intelligence. Targeted hunting with threat intelligence has proven,
especially recently, to reduce the dwell time of adversaries in networks, leading to more
efficient identification of threats.

While endpoint security data rated high on what is needed, endpoint-related data rated
lower on the overall scale of what is actually being collected. Just 71% collect endpoint
artifacts and patterns. Another 58% gathered file monitoring data, and 42% monitored
user activity. Because many advanced persistent threats (APTs) replicate standard users
and credentials, effective threat hunting is limited by the difficulty in detecting activity
based on network data alone. The lower numbers in endpoint analytics collected when
compared to what respondents believe is needed show that many respondents feel that
endpoint data is more obscure and harder to obtain.

Although network data-based data collections were rated high on the survey, endpoint
analysis data is still a gaping hole in most hunting operations. Logfile data across
multiple hosts can already be easily ingested into SIEM and other analytical systems.

Hunt Evil: Your Practical Guide to Threat Hunting 103

Because it is easier to obtain, the more critical systems you can pull logfiles from, the
better the horizon view across an organization. It is often a good idea to log allowed
traffic as well as denied or anomalous traffic, since malicious activity, such as data
exfiltration, often masquerades as legitimate traffic. Logfile analysis gives perspective to
unauthorized credential access, lateral movement by adversaries and malware execution
on systems. When collected from multiple systems, logfile analysis can be used to
identify anomalies through systems that are not acting in the same manner as the others
in your baseline comparisons.

In conclusion
Organizations are beginning to take a proactive approach to threat hunting, taking
security into their hands instead of waiting for the breach notice to come across the
wire. More organizations need to take that leap. And, they are starting to understand
that any threat hunting approach can only be partially automated. In fact, the act of
threat hunting leverages the results of automation, but it truly begins where automation
ends. Organizations need to ensure that they have appropriately trained staff to provide
the needed services. IR team members are the logical ones to tap and expand their
knowledge base to engage in threat hunting.

Increased investments will be made in this space. That means there will be organizations,
teams, and individuals coming forward with tools, people, and processes that work for
them but that may not be well suited for all environments. It is of paramount importance
that teams looking to build a threat hunting capability educate themselves appropriately
so that they can make wise investments.

Hunt Evil: Your Practical Guide to Threat Hunting 104

Danny is just a hacker who adores what he does and the community
that surrounds him. He’s had the honor of working for such companies
as Mandiant, GE Capital, Bank of America, and currently works as a
Security Evangelist with Sqrrl. He is an enthusiastic speaker with a love
of Tribal Knowledge Sharing, Japanese whisky and lock picks. Danny
has spoken at events like BSides Augusta, BSides Philadelphia, and is
one-third of the Rally Security podcast crew. He is also the creator of
DEF CON 610 and InfoSanity.org, a resource and sounding board for
those dealing with mental health issues in the Information Security
community.

Danny Akacki

Samuel is a cyber security specialist with a keen interest in incident
response and threat hunting. He currently works at KPMG where he is
part of a group of highly specialized experts defending KPMG networks.
On a daily basis, he responds to different incidents across KPMG’s
business ecosystems and is part of their threat hunting teams actively
chasing threats in their networks.

Samuel Alonso

Richard Bejtlich is Chief Security Strategist at FireEye, and was
Mandiant’s Chief Security Officer when FireEye acquired Mandiant in
2013. He is a nonresident senior fellow at the Brookings Institution, a
board member at the Open Information Security Foundation, and an
advisor to Threat Stack, Sqrrl, and Critical Stack. He is also a Master/
Doctor of Philosophy in War Studies Researcher at King’s College
London. Richard is a graduate of Harvard University and the United
States Air Force Academy. His fourth book is The Practice of Network
Security Monitoring (nostarch.com/nsm).

Richard Bejtlich

David has been involved in computer and network security for 15 years,
and has led consulting engagements with Fortune 500 companies, Wall
Street firms, public utilities, and major universities.

David Bianco

Contributors
Index of contributors in alphabetical order.

http://(nostarch.com/nsm

Hunt Evil: Your Practical Guide to Threat Hunting 105

Sergio worked for the U.S. government, Microsoft, and Dragos. He has
not only hunted the most sophisticated targeted threats in the world, but
also applied that intelligence to protect billions of users worldwide and
safeguarding civilization through the protection of critical infrastructure
and industrial control systems. He also proudly serves as the Technical
Director of the Global Emancipation Network, a non-profit non-
governmental organization (NGO), leading a world-class all-volunteer
team hunting human traffickers and finding their victims through data
science and analytics working towards saving tens of millions of lives.

Sergio Caltagirone

Jack is a former US Army Infantryman, and currently works as the
principal incident responder for a Fortune 10 company. He has written
extensively on threat hunting theory and practice.

Jack Crook

Tim is a seasoned security leader with over 20 years’ experience building
and running information security programs, large and complex incident
response engagements, and threat and vulnerability assessments. He
has deep experience in cyber-threat intelligence, reverse engineering,
and computer forensics. He is a recognized thought leader and author/
co-author of 14 books to date, as well as regular training and speaking
engagements at information security conferences.

Tim Crothers

Tyler is an Incident Response and Reverse Engineering Specialist with
over 15 years of Information Security Experience in multiple industries.
He has presented at multiple local and national information security
conferences and created and taught multiple training courses on
malware analysis and incident response.

Tyler Hudak

Rob Lee is the curriculum lead and author for digital forensic and
incident response training at the SANS Institute. With more than 15
years of experience in computer forensics, vulnerability and exploit
discovery, intrusion detection/prevention, and incident response, he
provides consulting services in the Washington, D.C. area. Before
starting his own business, Rob worked with government agencies in the

Rob Lee

Hunt Evil: Your Practical Guide to Threat Hunting 106

law enforcement, defense, and intelligence communities as a lead for
vulnerability discovery and exploit development teams, a cyber forensics
branch, and a computer forensic and security software development
team. Rob was also a director for MANDIANT, a company focused on
investigating advanced adversaries, such as the APT, for five years
before starting his own business and co-authored Know Your Enemy:
Learning About Security Threats, 2nd Edition.

Robert M. Lee is a SANS certified instructor and author of the ICS Active
Defense and Incident Response and Cyber Threat Intelligence courses,
is the founder and CEO of Dragos, a critical infrastructure cyber security
company, where he focuses on control system traffic analysis, incident
response, and threat intelligence research. He has performed defense,
intelligence, and attack missions in various government organizations,
including the establishment of a first-of-its-kind ICS/SCADA cyber threat
intelligence and intrusion analysis mission. Author of SCADA and Me as
well as Threat Intelligence and Me, he is a nonresident National Cyber
Security Fellow at New America, focusing on critical infrastructure cyber
security policy issues. Robert was named EnergySec’s 2015 Energy
Sector Security Professional of the Year and one of Forbes’ 30 under 30
(2016).

Robert M. Lee

Josh is the lead detection engineer at a Fortune 50 company. He has
over 4 years’ hands-on experience in the threat detection and incident
response domain. He is a contributor to multiple open-source network
security monitoring projects and communities and has been a presenter/
trainer at regional, national, and global information security conferences

Josh Liburdi

Ryan is a security technologist at Sqrrl. Throughout his career he
has attained experience in IT/Security planning at a large scale and
is proficient in multiple platforms and security techniques. He has
experience with troubleshooting, auditing and installations, network
intrusion detection, security, incident response, threat intelligence,
threat research, computer forensics, and network/systems auditing.

Ryan Nolette

Hunt Evil: Your Practical Guide to Threat Hunting 107

Over the past 12 years, Scott has served in a variety of capacities,
garnering technical experience in many areas. His career took him
through being a Windows System Admin to a Network Admin and finally
landing as a Security Specialist. He is currently serving as a Security
Assessor in a NERC/CIP and FISMA environment.

Scott Roberts

Chris Sanders is an information security author, trainer, and researcher
originally from Mayfield, KY. He is the founder of Applied Network
Defense, a company focused on delivering high quality, accessible
information security training. In previous roles, Chris worked with the
US Department of Defense, InGuardians, and Mandiant to build security
operation centers and train practitioners focused on defending defense,
government, and Fortune 500 networks.

Chris Sanders

	and Why It Matters
	Part I
	Hunting: Theory & Practice
	Chapter 1
	Threat Hunting: People, Process, Technology
	People
	Process
	Technology

	Chapter 2
	The Pyramid of Pain: Threat Hunting Edition
	Using CTI Effectively
	The Pyramid of Pain
	The Pyramid Explained
	Effective use of CTI for Hunting

	Chapter 3
	Diamond Model of Intrusion Analysis
	Diamond Model Benefits
	Understanding the Diamond Model in Threat Hunting/IR

	Chapter 4
	Hunting Through Large Volumes of Logs
	What am I looking for?
	Why am I looking for it?
	How do I find it?

	Chapter 5
	Hunting for Malicious DNS Namespace Collisions
	The Issue
	Detection, Prevention, and Response

	Chapter 6
	Hunting Anomalous Behavior in Proxy/DNS Queries
	Components of an attack
	Dynamic DNS
	DGA
	Attack Delivery

	Chapter 7
	Waiting vs. Passivity in DFIR

	PART II
	Hunting – Tools of The Trade
	Chapter 8
	Hunting for Uncategorized Proxy Events Using Sqrrl
	HTTP Proxies
	Using Risk Triggers with Uncategorized Domains
	Tips for Investigating Uncategorized Domains
	Conclusion

	Chapter 9
	Hunting Lateral Movement via PSEXEC Using Sqrrl and Bro
	Indicator Searches
	Virustotal
	Detecting PsExec Activity with Snort
	Detecting PsExec Activity Using Bro
	Stacking
	Machine Learning
	Example Hunt
	Creating Relationships Between Disparate Data Sets

	Chapter 10
	Hunting for Command and Control
	Understanding Command and Control
	High-level TTP overview
	Example Hypotheses/Sub-hypotheses
	Datasets to Explore
	Techniques to Use
	Stacking
	Machine Learning
	Example Hunt – Command and Control

	Chapter 11
	Hunting Critical Process Impersonation Using Python
	The Hypothesis
	The Data
	The Hunt
	Conclusions

	Chapter 12
	Hunting for PowerShell Abuse Using Sqrrl
	Introduction
	Why PowerShell?
	Formulating the Hunt: Automated Data Exfiltration (Windows Environment)
	Network Data: The Broad Brush
	Automated Data Exfiltration (Windows Host Environment)
	Network Findings
	The Host in Question
	Process Chaining
	Conclusion

	Chapter 13
	Leveraging Machine Learning for Cyber Threat Hunting
	Machine Learning Basics
	Step One – A Problem to Solve
	Step Two – Decide on Approach
	Step Three – Select Appropriate Data
	Step Four – Determine Proper Features
	Step Five – Build your Tool
	Step Six – Test and Tune
	Conclusion

	Afterword
	Contributors

